
Empirical Review of Automated Analysis Tools on 47,587
Ethereum Smart Contracts

Thomas Durieux
INESC-ID and IST, University of Lisbon, Portugal

thomas@durieux.me

João F. Ferreira
INESC-ID and IST, University of Lisbon, Portugal

joao@joaoff.com

Rui Abreu
INESC-ID and IST, University of Lisbon, Portugal

rui@computer.org

Pedro Cruz
IST, University of Lisbon, Portugal

pedrocrvz@gmail.com

ABSTRACT

Over the last few years, there has been substantial research on auto-
mated analysis, testing, and debugging of Ethereum smart contracts.
However, it is not trivial to compare and reproduce that research.
To address this, we present an empirical evaluation of 9 state-of-the-
art automated analysis tools using two new datasets: i) a dataset
of 69 annotated vulnerable smart contracts that can be used to
evaluate the precision of analysis tools; and ii) a dataset with all
the smart contracts in the Ethereum Blockchain that have Solidity
source code available on Etherscan (a total of 47,518 contracts). The
datasets are part of SmartBugs, a new extendable execution frame-
work that we created to facilitate the integration and comparison
between multiple analysis tools and the analysis of Ethereum smart
contracts. We used SmartBugs to execute the 9 automated analysis
tools on the two datasets. In total, we ran 428,337 analyses that took
approximately 564 days and 3 hours, being the largest experimental
setup to date both in the number of tools and in execution time.
We found that only 42% of the vulnerabilities from our annotated
dataset are detected by all the tools, with the tool Mythril having
the higher accuracy (27%). When considering the largest dataset,
we observed that 97% of contracts are tagged as vulnerable, thus
suggesting a considerable number of false positives. Indeed, only a
small number of vulnerabilities (and of only two categories) were
detected simultaneously by four or more tools.

CCS CONCEPTS

• Software and its engineering → Software defect analysis;
Software testing and debugging.

KEYWORDS

Smart contracts, Solidity, Ethereum, Blockchain, Tools, Debugging,
Testing, Reproducible Bugs

1 INTRODUCTION

Blockchain technology has been receiving considerable attention
from industry and academia, for it promises to disrupt the digital
online world by enabling a democratic, open, and scalable digital
economy based on decentralized distributed consensus without the
intervention of third-party trusted authorities. Among the currently
available blockchain-based platforms, Ethereum [5] is one of the
most popular, mainly because it enables developers to write dis-
tributed applications (Dapps) based on smart contracts — programs
that are executed across a decentralised network of nodes. The main

language used to develop Ethereum smart contracts is Solidity1, a
high-level language that follows a JavaScript-like, object-oriented
paradigm. Contracts written in Solidity are compiled to bytecode
that can be executed on the Ethereum Virtual Machine (EVM).

Smart contracts are at the core of Ethereum’s value. However,
as noted by some researchers [3, 27], due to the idiosyncrasies of
the EVM, writing secure smart contracts is far from trivial. In a
preliminary study performed on nearly one million Ethereum smart
contracts, using one analysis framework for verifying correctness,
34,200 of them were flagged as vulnerable [32]. Also, Luu et al. [27]
proposed a symbolic execution tool, coined Oyente, and showed
that of 19,366 Ethereum smart contracts analyzed, 8,833 (around
46%) were flagged as vulnerable. Famous attacks, such as TheDAO
exploit [11] and the Parity wallet bug [37] illustrate this problem
and have led to dramatic financial losses.

There has been some effort from the research community to
develop automated analysis tools that locate and eliminate vulnera-
bilities in smart contracts [18, 27, 39, 42]. However, it is not easy to
compare and reproduce that research: even though several of the
tools are publicly available, the datasets used are not. If a developer
of a new tool wants to compare the new tool with existing work, the
current approach is to contact the authors of alternative tools and
hope that they give access to their datasets (as done in, e.g., [35]).

The aim of this paper is twofold. First, to be able to execute
and compare automated analysis tools, hence setting the ground
for fair comparisons, we provide two datasets of Solidity smart
contracts. The first dataset contains 69 manually annotated smart
contracts that can be used to evaluate the precision of analysis
tools. The second dataset contains all available smart contracts in
the EthereumBlockchain that have Solidity source code available on
Etherscan (a total of 47,518 contracts). We have executed 9 state-of-
the-art automated analysis tools on the two datasets and analyzed
the results in order to provide a fair point of comparison for future
smart contract analysis tools. In total, the execution of all the tools
required 564 days and 3 hours to complete 428,337 analyses.

Second, to simplify research on automated analysis techniques
for smart contracts, we provide a novel, extendable, and easy to
use execution framework, coined SmartBugs, to execute these tools
on the same execution environment. This framework currently
contains 9 configured smart contract analysis tools.

In summary, the contributions of the paper are: (1) A dataset of
annotated vulnerable Solidity smart contracts; (2) A dataset that con-
tains all the available smart contracts from the Ethereum blockchain

1Interested readers on Solidity, refer to https://solidity.readthedocs.io.

https://solidity.readthedocs.io

Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz

that have Solidity source code available in Etherscan; (3) An exe-
cution framework that includes 9 pre-configured smart contract
analysis tools; and (4) An analysis of the execution of 9 tools on
47,587 smart contracts.

Our study demonstrates that there are several open challenges
that need to be addressed by future work to improve the quality
of existing tools and techniques. We report that the current state-
of-the-art is not able to detect vulnerabilities from two categories
of DASP10: Bad Randomness and Short Addresses. Also, the tools
are only able to detect together 48/115 (42%) of the vulnerabilities
from our dataset of annotated vulnerable smart contracts. The most
accurate tool, Mythril, is able to detect only 27% of the vulnerabil-
ities. When considering the largest dataset, 97% of contracts are
tagged as vulnerable, thus suggesting a considerable number of
false positives. In conclusion, we show that state-of-the-art tech-
niques are far from being perfect, still likely producing too many
false positives. On the positive side, the best performing techniques
do so at a marginal execution cost.

SmartBugs is available at
https://github.com/smartbugs/smartbugs

2 STUDY DESIGN

Blockchain technologies are getting more and more attention from
the research community and also, more importantly, from indus-
try. As more blockchain-based solutions emerge, there is a higher
reliance on the quality of the smart contracts. The industry and
the research community came up with automatic approaches that
analyze smart contracts to identify vulnerabilities and bad practices.
The main goal of this paper is to report the current state of the art of
currently available automated analysis tools for smart contracts. To
facilitate reproducibility and comparison between tools, the study
is performed using a new extendable execution framework that we
call SmartBugs (see Section 2.4).

In this section, we present the design of our study, including
the research questions, the systematic selection of the tools and
datasets of smart contracts, the execution framework, and the data
collection and analysis methodology.

2.1 Research Questions

In this study, we aim to answer the following research questions:
RQ1. [Effectiveness] What is the effectiveness of current analysis

tools in detecting vulnerabilities on Solidity smart contracts?
In this first research question, we are interested in deter-
mining how precise state-of-the-art analysis tools are in
detecting vulnerabilities on known faulty smart contracts.

RQ2. [Production] How many vulnerabilities are present in the
Ethereum blockchain?
In this research question, we investigate the vulnerabilities
that are detected in the Ethereum blockchain. We consider
the most popular vulnerabilities, the evolution of the vul-
nerabilities over time, and the consensus among different
combinations of automated analysis tools.

RQ3. [Performance] How long do the tools require to analyze the
smart contracts?
And finally, we compare the performance of the analysis
tools. The goal is to identify which tool is the most efficient.

Table 1: Tools identified as potential candidates for this

study.

Tools Tool URLs

1 contractLarva [2] https://github.com/gordonpace/contractLarva
2 E-EVM [33] https://github.com/pisocrob/E-EVM
3 Echidna https://github.com/crytic/echidna
4 Erays [44] https://github.com/teamnsrg/erays
5 Ether [26] N/A
6 Ethersplay https://github.com/crytic/ethersplay
7 EtherTrust [19] https://www.netidee.at/ethertrust
8 EthIR [1] https://github.com/costa-group/EthIR
9 FSolidM [28] https://github.com/anmavrid/smart-contracts
10 Gasper [9] N/A
11 HoneyBadger [41] https://github.com/christoftorres/

HoneyBadger
12 KEVM [21] https://github.com/kframework/evm-

semantics
13 MadMax [17] https://github.com/nevillegrech/MadMax
14 Maian [32] https://github.com/MAIAN-tool/MAIAN
15 Manticore [30] https://github.com/trailofbits/manticore/
16 Mythril [31] https://github.com/ConsenSys/mythril-classic
17 Octopus https://github.com/quoscient/octopus
18 Osiris [40] https://github.com/christoftorres/Osiris
19 Oyente [27] https://github.com/melonproject/oyente
20 Porosity [38] https://github.com/comaeio/porosity
21 rattle https://github.com/crytic/rattle
22 ReGuard [25] N/A
23 Remix https://github.com/ethereum/remix
24 SASC [43] N/A
25 sCompile [6] N/A
26 Securify [42] https://github.com/eth-sri/securify
27 Slither [16] https://github.com/crytic/slither
28 Smartcheck [39] https://github.com/smartdec/smartcheck
29 Solgraph https://github.com/raineorshine/solgraph
30 Solhint https://github.com/protofire/solhint
31 SolMet [20] https://github.com/chicxurug/SolMet-

Solidity-parser
32 teEther [23] https://github.com/nescio007/teether
33 Vandal [4] https://github.com/usyd-blockchain/vandal
34 VeriSol [24] https://github.com/microsoft/verisol
35 Zeus [22] N/A

Table 2: Excluded and included analysis tools based on our

inclusion criteria.

Inclusion criteria Tools that violate criteria

Ex
cl
ud

ed
(2
6)

Available and CLI (C1) Ether, Gasper, ReGuard, Remix,
SASC, sCompile, teEther, Zeus

Compatible Input (C2) MadMax, Vandal
Only Source (C3) Echidna, VeriSol
Vulnerability Finding (C4) contractLarva, E-EVM, Erays, Ether-

splay, EtherTrust, EthIR, FSolidM,
KEVM, Octopus, Porosity, rattle, Sol-
graph, SolMet, Solhint

In
cl
ud

ed
(9
) HoneyBadger, Maian, Manticore, Mythril, Osiris, Oyente,

Securify, Slither, Smartcheck

https://github.com/smartbugs/smartbugs
https://github.com/gordonpace/contractLarva
https://github.com/pisocrob/E-EVM
https://github.com/crytic/echidna
https://github.com/teamnsrg/erays
https://github.com/crytic/ethersplay
https://www.netidee.at/ethertrust
https://github.com/costa-group/EthIR
https://github.com/anmavrid/smart-contracts
https://github.com/christoftorres/HoneyBadger
https://github.com/christoftorres/HoneyBadger
https://github.com/kframework/evm-semantics
https://github.com/kframework/evm-semantics
https://github.com/nevillegrech/MadMax
https://github.com/MAIAN-tool/MAIAN
https://github.com/trailofbits/manticore/
https://github.com/ConsenSys/mythril-classic
https://github.com/quoscient/octopus
https://github.com/christoftorres/Osiris
https://github.com/melonproject/oyente
https://github.com/comaeio/porosity
https://github.com/crytic/rattle
https://github.com/ethereum/remix
https://github.com/eth-sri/securify
https://github.com/crytic/slither
https://github.com/smartdec/smartcheck
https://github.com/raineorshine/solgraph
https://github.com/protofire/solhint
https://github.com/chicxurug/SolMet-Solidity-parser
https://github.com/chicxurug/SolMet-Solidity-parser
https://github.com/nescio007/teether
https://github.com/usyd-blockchain/vandal
https://github.com/microsoft/verisol

Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts

2.2 Subject Tools

In order to discover smart contract automated analysis tools, we
started off by using the survey of Angelo et al. [12] and we extended
their list of tools by searching the academic literature and the
internet for other tools. We ended up with the 35 tools that are
listed in Table 1.

Not all the identified tools are well suited for our study. Only the
tools that met the following three inclusion criteria were included
in our study:
• Criterion #1. [Available and CLI] The tool is publicly available
and supports a command-line interface (CLI). The CLI facilitates
the scalability of the analyses.

• Criterion #2. [Compatible Input] The tool takes as input a Solidity
contract. This excludes tools that only consider EVM bytecode.

• Criterion #3. [Only Source] The tool requires only the source code
of the contract to be able to run the analysis. This excludes tools
that require a test suite or contracts annotated with assertions.

• Criterion #4. [Vulnerability Finding] The tool identifies vulnera-
bilities or bad practices in contracts. This excludes tools that are
described as analysis tools, but only construct artifacts such as
control flow graphs.
After inspecting all 35 analysis tools presented in Table 1, we

found 9 tools that meet the inclusion criteria outlined. Table 2
presents the excluded and included tools, and for the excluded ones,
it also shows which criteria they did not meet.

HoneyBadger [41] is developed by a group of researchers at the
University of Luxembourg and is an Oyente-based (see below) tool
that employs symbolic execution and a set of heuristics to pinpoint
honeypots in smart contracts. Honeypots are smart contracts that
appear to have an obvious flaw in their design, which allows an
arbitrary user to drain Ether2 from the contract, given that the
user transfers a priori a certain amount of Ether to the contract.
When HoneyBadger detects that a contract appears to be vulnerable,
it means that the developer of the contract wanted to make the
contract look vulnerable, but is not vulnerable.

Maian [32], developed jointly by researchers from the National
University of Singapore and University College London, is also
based on the Oyente tool. Maian looks for contracts that can be
self-destructed or drained of Ether from arbitrary addresses, or that
accept Ether but do not have a payout functionality. A dynamic
analysis in a private blockchain is then used to reduce the number
of false positives.

Manticore [30], developed by TrailOfBits, also uses symbolic
execution to find execution paths in EVM bytecode that lead to
reentrancy vulnerabilities and reachable self-destruct operations.

Mythril [31], developed by ConsenSys, relies on concolic analy-
sis, taint analysis and control flow checking of the EVM bytecode to
prune the search space and to look for values that allow exploiting
vulnerabilities in the smart contract.

Osiris [40], developed by a group of researchers at the Univer-
sity of Luxembourg, extends Oyente to detect integer bugs in smart
contracts.

Oyente [27], developed by Melonport AG, is one of the first
smart contract analysis tools. It is also used as a basis for several

2Ether is the cryptocurrency of Ethereum.

other approaches like Maian and Osiris. Oyente uses symbolic
execution on EVM bytecode to identify vulnerabilities.

Securify [42], developed by ICE Center at ETHZurich, statically
analyzes EVM bytecode to infer relevant and precise semantic infor-
mation about the contract using the Souffle Datalog solver. It then
checks compliance and violation patterns that capture sufficient
conditions for proving if a property holds or not.

Slither [16], developed by TrailOfBits, is a static analysis frame-
work that converts Solidity smart contracts into an intermediate
representation called SlithIR and applies known program analysis
techniques such as dataflow and taint tracking to extract and refine
information.

Smartcheck [39], developed by SmartDec, is a static analysis
tool that looks for vulnerability patterns and bad coding practices.
It runs lexical and syntactical analysis on Solidity source code.

2.3 Datasets of Smart Contracts

For this study, we crafted two datasets of Solidity smart contracts
with distinct purposes. The first dataset, sbcurated, consists of 69
vulnerable smart contracts (see Section 2.3.1). Contracts in this
dataset are either real contracts that have been identified as vulner-
able or have been purposely created to illustrate a vulnerability. The
goal of this dataset is to have a set of known vulnerable contracts
labelled with the location and category of the vulnerabilities. This
dataset can be used to evaluate the effectiveness of smart contract
analysis tools in identifying vulnerabilities.

The second dataset is named sbwild (see Section 2.3.2) and con-
tains 47,518 contracts extracted from the Ethereum blockchain. The
set of vulnerabilities of those contracts is unknown; however, this
dataset can be used to identify real contracts that have (potential)
vulnerabilities and have an indication of how frequent a specific
problem is. It can also be used to compare analysis tools in terms
of metrics such as performance.

2.3.1 sb
curated

: A Dataset of 69 Vulnerable Smart Contracts.

Goal. Our objective in constructing this dataset is to collect a
set of Solidity smart contracts with known vulnerabilities, from
deployed contracts in the Ethereum network to examples provided
to illustrate vulnerabilities, that can serve as a dataset suite for
research in the security analysis of Solidity smart contracts. We use
the taxonomy presented in the DASP to describe vulnerabilities of
Ethereum smart contracts (see Categories in Table 3). Each collected
contract is classified in one of the ten categories. We also manually
tagged the lines that contain the vulnerability. This classification
allows for new smart contract analysis tools to be easily evaluated.

Collection Methodology. This dataset has been created by collect-
ing contracts from three different sources: 1. GitHub repositories,
2. blog posts that analyze contracts, and 3. the Ethereum network.
80% of the contracts were collected from GitHub repositories. We
identified GitHub repositories that match relevant search queries
(‘vulnerable smart contracts’, ‘smart contracts security’, ‘solidity vul-
nerabilities’) and contain vulnerable smart contracts. We searched
Google using the same queries. We found several repositories with
vulnerable smart contracts such as not-so-smart-contracts3 and SWC

3not-so-smart-contracts: https://github.com/crytic/not-so-smart-contracts

https://github.com/crytic/not-so-smart-contracts

Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz

Table 3: Categories of vulnerabilities available in the dataset sb
curated

. For each category, we provide a description, the level

at which the attack can be mitigated, the number of contracts available within that category, and the total number of lines of

code in the contracts of that category (computed using cloc 1.82).

Category Description Level Contracts Vulns LoC

Access Control Failure to use function modifiers or use of tx.origin Solidity 17 19 899
Arithmetic Integer over/underflows Solidity 14 22 295
Bad Randomness Malicious miner biases the outcome Blockchain 8 31 1,079
Denial of service The contract is overwhelmed with time-consuming computations Solidity 6 7 177
Front running Two dependent transactions that invoke the same contract are included in one block Blockchain 4 7 137
Reentrancy Reentrant function calls make a contract to behave in an unexpected way Solidity 7 8 778
Short addresses EVM itself accepts incorrectly padded arguments EVM 1 1 18
Time manipulation The timestamp of the block is manipulated by the miner Blockchain 4 5 76
Unchecked low level
calls

call(), callcode(), delegatecall() or send() fails and it is not checked Solidity 5 12 225

Unknown Unknowns Vulnerabilities not identified in DASP 10 N/A 3 3 115

Total 69 115 3,799

Registry4. The latter is a classification scheme for security weak-
nesses in Ethereum smart contracts that is referenced in Mythril’s
GitHub repository. We also extracted vulnerabilities that come from
trusted entities in blog posts where smart contracts are audited,
tested or discussed such as Positive.com5 and Blockchain.unica6.
And finally, we used Etherscan7 to collect smart contracts that are
deployed on the Ethereum network and are known to contain vul-
nerabilities (e.g. the original SmartBillions contract). Note that all
the contracts were collected from trusted entities in the field. We
also ensure the traceability of each contract by providing the URL
from which they were taken and its author, where possible.

Dataset Statistics. The dataset contains 69 contracts and 115
tagged vulnerabilities, divided into ten categories of vulnerabilities.
Table 3 presents information about the 69 contracts. Each line
contains a category of vulnerability. For each category, we provide
a description, the level at which the attack can be mitigated, the
number of contracts available within that category, and the total
number of lines of code in the contracts of that category.

Dataset Availability. The dataset is available in the repository
of SmartBugs [14]. The dataset is structured as follow. The dataset
is divided into ten folders named with the DASP categories, and
the folders contain the contracts of that category. Moreover, the
dataset contains the file vulnerabilities.json which contains
the details of each vulnerable contract. It details the name, the origin
URL, the path, and the lines and the category of the vulnerabilities.

2.3.2 sb
wild

: 47,518 Contracts from the Ethereum Blockchain.

Goal. The goal of this second dataset is to collect as many smart
contracts as possible from the Ethereum blockchain, in order to
have a representative picture of the practice and (potential) vulner-
abilities that are present in the production environment.

Collection Methodology. The data collection for the second
dataset follows a different strategy. In this dataset, we collect all
the different contracts from the Ethereum blockchain. Etherscan

4SWC Registry: https://smartcontractsecurity.github.io/SWC-registry
5Positive.com: https://blog.positive.com
6Blockchain.unica: http://blockchain.unica.it/projects/ethereum-survey/
7Etherscan: https://etherscan.io

Table 4: Statistics on the collection of Solidity smart con-

tracts from the Ethereum blockchain.

Solidity source not available 1,290,074
Solidity source available 972,975
Unaccessible 47

Total 2,263,096

Unique Solidity Contracts 47,518
LOC 9,693,457

allows downloading the source code of a contract if you know its
address. Therefore, we firstly use Google BigQuery [29] to collect
the Ethereum contract addresses that have at least one transaction.
We used the following BigQuery request to select all the contract
addresses and count the number of transactions that are associated
with each contract8.
SELECT contracts.address, COUNT(1) AS tx_count

FROM `ethereum_blockchain.contracts` AS contracts
JOIN `ethereum_blockchain.transactions` AS transactions

ON (transactions.to_address = contracts.address)
GROUP BY contracts.address
ORDER BY tx_count DESC
After collecting all the contract addresses, we used Etherscan

and its API to retrieve the source code associated with an address.
However, Etherscan does not have the source code for every con-
tract. Therefore, at the end of this step, we obtained a Solidity file
for each contract that has its source code available in the Etherscan
platform.

The final step was to filter the set of contracts to remove dupli-
cates. Indeed, we observe that 95% of the available Solidity contracts
are duplicates. We consider that two contracts are duplicates when
the MD5 checksums of the two source files are identical after re-
moving all the spaces and tabulations.

Dataset Statistics. Table 4 presents the statistics of this dataset.
The query on Google BigQuery retrieved 2,263,096 smart contract
addresses. We then requested Etherscan for the Solidity source
code of those contracts, and we obtained 972,975 Solidity files. This
8The query is also available at the following URL: https://bigquery.cloud.google.com/
savedquery/281902325312:47fd9afda3f8495184d98db6ae36a40c

https://smartcontractsecurity.github.io/SWC-registry
https://blog.positive.com
http://blockchain.unica.it/projects/ethereum-survey/
https://etherscan.io
https://bigquery.cloud.google.com/savedquery/281902325312:47fd9afda3f8495184d98db6ae36a40c
https://bigquery.cloud.google.com/savedquery/281902325312:47fd9afda3f8495184d98db6ae36a40c

Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts

means that 1,290,074 of the contracts do not have an associated
source file in Etherscan. The filtering process of removing duplicate
contracts resulted in 47,518 unique contracts (a total of 9,693,457
lines).

Dataset Availability. The dataset is available on GitHub [15].
The dataset contains the Solidity source code of each of the 47,518
contracts. The contracts are named with the address of the contract.
We also attached with this dataset additional information in order
to use this dataset for other types of studies. It contains: • the
name of the contract; • the Solidity version that has been used to
compile the contract; • the addresses of the duplicated contracts;
• the number of transactions associated with the contract; • the
size of the contract in lines of Solidity code; • the date of the last
transactions for the 2,263,096 contracts; • the date of creation for
the 2,263,096 contracts; and • the Ethereum balance of 972,975
contracts that have their source code available.

2.4 The Execution Framework: SmartBugs

We developed SmartBugs, an execution framework aiming at simpli-
fying the execution of analysis tools on datasets of smart contracts.
SmartBugs has the following features: • A plugin system to easily
add new analysis tools, based on Docker images; • Parallel exe-
cution of the tools to speed up the execution time; • An Output
mechanism that normalizes the way the tools are outputting the
results, and simplify the process of the output across tools.

SmartBugs currently supports 9 tools (see Section 2.2).

2.4.1 Architecture. SmartBugs is composed of five main parts:
(1) The first consists of the command-line interface to use Smart-
Bugs (see Section 2.4.2). (2) The second part contains the tool plug-
ins. Each tool plugin contains the configuration of the tools. The
configuration contains the name of the Docker image, the name
of the tool, the command line to run the tool, the description of
the tool, and the location of the output of results. (3) The Docker
images that are stored on Docker Hub. We use Docker images of
the tools when a Docker image is already available; otherwise, we
create our own image (all Docker images are publicly available on
Docker Hub, including our own). (4) The datasets of smart con-
tracts (see Section 2.3). (5) The SmartBugs’ runner puts all the parts
of SmartBugs together to execute the analysis tools on the smart
contracts.

2.4.2 Dataset Interface Details. SmartBugs provides a command-
line interface that simplifies the execution of the smart contract
analysis tools. It takes a set of tool names and a path to Solidity files
to analyze and produces two files per execution: 1) a result.log
file that contains the stdout of the execution and 2) a result.json
file that contains the results of the analysis in a parsable format.
Moreover, we provide scripts that process those outputs and render
them in readable tables such as the one presented in this paper.

2.5 Data Collection and Analysis

To answer our research questions, we used SmartBugs to execute
the 9 tools on the two datasets described in Section 2.3. We collected
the output and used it for further analysis. In this section, we
describe the setup of the tools (Section 2.5.1) and their execution
(Section 2.5.2).

2.5.1 Tools’ Setup. For this experiment, we set the time budget to
30 minutes per analysis. In order to identify a suitable time budget
for one execution of one tool over one contract, we first executed
all the tools on sbcurated dataset. We then selected a time budget
that is higher than the average execution time (one minute and 44
seconds). If the time budget is spent, we stop the execution and
collect the partial results of the execution. During the execution of
our experiment, no other tool but Manticore faced timeouts.

2.5.2 Large-scale Execution. To our knowledge, our experimental
setup is the largest one on smart contract analysis, both in the
number of tools and in execution time. In total, we executed 9 anal-
ysis tools on 47,518 contracts. This represents 428,337 analyzes,
which took approximately 564 days and 3 hours of combined ex-
ecution, more than a year of continuous execution. We used two
cloud providers to rent the servers required for this experiment.
The first provider was Scaleway9, where we used three servers with
32 vCPUs with 128 GB of RAM. We added a budget of 500e, and
we spent 474.99e.

The second provider was Google Cloud10, where we also used
three servers with 32 vCPUswith 30GB of RAM.We spent 1038.46e
with Google Cloud. In total, we spent 1,038.46 + 474.99 = 1513.45e
to execute the experiments discussed in this paper. We used two
cloud providers due to administrative restrictions on our budget
line. We were initially targeting Scaleway because it is cheaper than
Google Cloud, but we were not able to spend more than 500e with
this provider. All the logs and the raw results of the analysis are
available at [13].

3 RESULTS

The results of our empirical study, as well as the answers to our
research questions, are presented in this section.

3.1 Precision of the Analysis Tools (RQ1)

To answer this first research question, we used sbcurated, the
dataset of 69 contracts described in Section 2.3.1. Since each con-
tract of this dataset is categorized in one of the ten DASP categories,
we can compute the ability of the 9 tools in detecting the vulnerabil-
ities present in the 69 contracts. The methodology that we followed
to answer this research question was the following: (1) We executed
the 9 tools on the 69 contracts. The result of this execution is avail-
able on GitHub [13]. (2) We extracted all the vulnerabilities that
were detected by the tools into a JSON file. (3) We mapped the de-
tected vulnerabilities to a category of vulnerabilities (see Table 3). To
achieve this task, we manually annotated all the vulnerability types
that have been detected into one of the ten DASP categories. For
example, Oyente detects a vulnerability called Integer Overflow
that we link to the category Arithmetic. In total, we identify 141
vulnerability types, and 97 of them have been tagged in one of the
ten categories. The remaining 44 do not fit the DASP taxonomy
(for example, some tools warn about the use of inline assembly,
which is considered a bad practice but does not necessarily lead to
vulnerable contracts). The mapping that we created is available at:
https://tinyurl.com/smartbugs-mapping (note that this information

9Scaleway: https://www.scaleway.com
10Google Cloud: https://cloud.google.com

https://tinyurl.com/smartbugs-mapping
https://www.scaleway.com
https://cloud.google.com

Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz

Table 5: Vulnerabilities identified per category by each tool.

Category HoneyBadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck Total

Access Control 0/19 0% 0/19 0% 4/19 21% 4/19 21% 0/19 0% 0/19 0% 0/19 0% 4/19 21% 2/19 11% 5/19 26%
Arithmetic 0/22 0% 0/22 0% 4/22 18% 15/22 68% 11/22 50% 12/22 55% 0/22 0% 0/22 0% 1/22 5% 19/22 86%
Denial of Ser-
vice

0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/7 0% 0/ 7 0%

Front Running 0/7 0% 0/7 0% 0/7 0% 2/7 29% 0/7 0% 0/7 0% 2/7 29% 0/7 0% 0/7 0% 2/ 7 29%
Reentrancy 0/8 0% 0/8 0% 2/8 25% 5/8 62% 5/8 62% 5/8 62% 5/8 62% 7/8 88% 5/8 62% 7/ 8 88%
Time Manipu-
lation

0/5 0% 0/5 0% 1/5 20% 0/5 0% 0/5 0% 0/5 0% 0/5 0% 2/5 40% 1/5 20% 3/ 5 60%

Unchecked
LowLevel Calls

0/12 0% 0/12 0% 2/12 17% 5/12 42% 0/12 0% 0/12 0% 3/12 25% 4/12 33% 4/12 33% 9/12 75%

Unknown Un-
knowns

2/3 67% 0/3 0% 0/3 0% 0/3 0% 0/3 0% 0/3 0% 0/3 0% 3/3 100% 0/3 0% 3/ 3 100%

Total 2/115 2% 0/115 0% 13/115 11% 31/115 27% 16/115 14% 17/115 15% 10/115 9% 20/115 17% 13/115 11% 48/115 42%

Table 6: Total number of detected vulnerabilities by each tool, including vulnerabilities not tagged in the dataset.

Category HoneyBadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck Total

Access Control 0 10 28 24 0 0 6 20 3 91
Arithmetic 0 0 11 92 62 69 0 0 23 257
Denial of Service 0 0 0 0 27 11 0 2 19 59
Front Running 0 0 0 21 0 0 55 0 0 76
Reentrancy 0 0 4 16 5 5 32 15 7 84
Time Manipulation 0 0 4 0 4 5 0 5 2 20
Unchecked Low Level Calls 0 0 4 30 0 0 21 13 14 82
Unknown Unknowns 5 2 25 32 0 0 0 28 8 100

Total 5 12 76 215 98 90 114 83 76 769

will be part of the Wiki in the official GitHub repository once dou-
ble-blind is lifted in order to be reused by the community). (4) At
this point, we were able to identify which vulnerabilities the tools
detect. Unfortunately, we found out that none of the 9 tools were
able to detect vulnerabilities of the categories Bad Randomness and
Short Addresses.

The results of this first study are presented in Table 5 and Table 6.
The first table presents the number of known vulnerabilities that
have been identified. A vulnerability is considered as identified
when a tool detects a vulnerability of a specific category at a specific
line, and it matches the vulnerability that has been annotated in
the dataset. Each row of Table 5 represents a vulnerability category,
and each cell presents the number of vulnerabilities where the
tool detects a vulnerability of this category. This table summarizes
the strengths and weaknesses of the current state of the art of
smart contract analysis tools. It shows that the tools can accurately
detect vulnerabilities of the categories Arithmetic, Reentrancy, Time
manipulation, andUnknownUnknowns. With respect to the category
Unknown Unknowns, the tools detected vulnerabilities such as the
presence of uninitialized data and the possibility of locking down
Ether. However, they were not accurate in detecting vulnerabilities
of the categories Access Control, Denial of service, and Front running.
The categories Bad Randomness and Short Addresses are not listed,
since none of the tools are able to detect vulnerabilities of these
types. This shows that there is still room for improvement and,
potentially, for new approaches to detect vulnerabilities of the ten
DASP categories.

Table 6 also shows that the tools offer distinct accuracies. Indeed,
the tool Mythril has the best accuracy among the 9 tools. Mythril
detects 27% of all the vulnerabilities when the average of all tools
is 12%. The ranking of the tools is comparable to the one observed
by Parizi et al. [34]. However, the average accuracy is lower on
our benchmark sbcurated. Moreover, Mythril, Manticore, Slither,
and Smartcheck are the tools that detect the largest number of
different categories (5 categories). Despite its good results, Mythril
is not powerful enough to replace all the tools: by combining the
detection abilities of all the tools, we succeed to detect 42% of all
the vulnerabilities. However, depending on the available computing
power, it might not be realistic to combine all the tools.

Therefore, we suggest the combination of Mythril and Slither,
since it detects 42 (37%) of all the vulnerabilities. This combination
offers a good balance between performance and execution cost.
This combination is the best possible combination by a considerable
margin. The second best combination, Mythrill and Oyente, only
succeeds to detect 33 (29%) of all the vulnerabilities.

We now consider all the vulnerability detections and not only
the ones that have been tagged in sbcurated. Table 6 presents the
total number of vulnerabilities detected by the tools. This table
allows the comparison of the total number of detected vulnerabili-
ties with the number of detected known vulnerabilities shown in
Table 5. Unsurprisingly, the more accurate a tool is in detecting
known vulnerabilities, the more accurate it is at detecting unknown
vulnerabilities. The output of the tools that are performing the best
are also producing much more warnings (i.e., their output is more
noisy), making it difficult for a developer to exploit the results.

Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts

Answer to RQ1. What is the accuracy of current analysis

tools in detecting vulnerabilities on Solidity smart con-

tracts? By combining the 9 tools together, they are only able
to detect 42% of all the vulnerabilities. This shows that there is
still room to improve the accuracy of the current approaches
to detect vulnerabilities in smart contracts. We observe that the
tools underperform to detect vulnerabilities in the following three
categories: Access Control, Denial of service, and Front running.
They are unable to detect by design vulnerabilities from Bad Ran-
domness and Short Addresses categories. We also observe that
Mythril outperforms the other tools by the number of detected
vulnerabilities (31 27%) and by the number of vulnerability cate-
gories that it targets (5/9 categories). The combination of Mythril
and Slither allows detecting a total of 42/115 (37%) vulnerabilities,
which is the best trade-off between accuracy and execution costs.

3.2 Vulnerabilities in Production Smart

Contracts (RQ2)

To answer the second research question, we analyzed the ability of
the 9 selected tools to detect vulnerabilities in the contracts from
the dataset sbwild (described in Section 2.3.2). We followed the
same methodology as in the previous research question, however,
for sbwild, we do not have an oracle to identify the vulnerabilities.

Table 7 presents the results of executing the 9 tools on the 47,518
contracts. It shows that the 9 tools are able to detect eight different
categories of vulnerabilities. Note that the vulnerabilities detected
by HoneyBadger are contracts that look vulnerable but are not.
They are designed to look vulnerable in order to steal Ether from
people that tries to exploit the vulnerability. In total, 44,589 con-
tracts (93%) have at least one vulnerability detected by one of the 9
tools.

Such a high number of vulnerable contracts suggests the pres-
ence of a considerable number of false positives. Oyente is the ap-
proach that identifies the highest number of contracts as vulnerable
(73%), mostly due to vulnerabilities in the Arithmetic category. This
observation is coherent with the observation of Parizi et al. [34],
since they determine that Oyente has the highest number of false
positives when compared to Mythril, Securify, and Smartcheck.

Since we observed a potentially large number of false positives,
we analyzed to what extent the tools agree in vulnerabilities they
flag. The hypothesis is that if a vulnerability is identified exclu-
sively by a single tool, the probability of it being a false positive
increases. Figure 1 presents the results of this analysis. This figure
shows the proportion of detected vulnerabilities that have been
identified exclusively by one tool alone, two tools, three tools, and
finally by four or more tools. HoneyBadger has a peculiar, but useful
role: if HoneyBadger detects a vulnerability, it actually means that
the vulnerability does not exist. So, consensus with HoneyBadger
suggests the presence of false positives.

It is clear from the figure that the large majority of the vulnerabil-
ities have been detected by one tool only. One can observe that there
are 71.25% of the Arithmetic vulnerabilities to be found by more
than one tool. It is also the category with the highest consensus
between four and more tools: 937 contracts are flagged as having an
Arithmetic vulnerability with a consensus of more than three tools.

0

50

100

H
on

ey
ba
dg

er

1 2 3 4+

0

50

100

M
ai
an

0

50

100

M
an
tic

or
e

0

50

100

M
yt
hr
il

0

50

100

O
si
ris

0

50

100

O
ye
nt
e

0

50

100

Se
cu
rif
y

0

50

100

Sl
ith

er

0

50

100

Sm
ar
tc
he
ck

A
cc
es
sC

on
tr
ol

A
rit
hm

et
ic

D
en
ia
lo

fS
er
vi
ce

Fr
on

tR
un

ni
ng

Re
en
tr
an
cy

Ti
m
e
M
an
ip
ul
at
io
n

U
nc
he
ck
ed

Ca
lls

U
nk

no
w
n
U
nk

no
w
ns

0

50

100

To
ta
l

Figure 1: Proportion of vulnerabilities identified by exactly

one (1), two (2) or three (3) tools, and by four tools or more

(4+)

Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz

Table 7: The total number of contracts that have at least one vulnerability (analysis of 47,518 contracts).

Category HoneyBadger Maian Manticore Mythril Osiris Oyente Securify Slither Smartcheck Total

Access Control 0 0% 44 0% 47 0% 1,076 2% 0 0% 2 0% 614 1% 2,356 4% 384 0% 3,801 8%
Arithmetic 1 0% 0 0% 102 0% 18,515 39% 13,922 29% 34,306 72% 0 0% 0 0% 7,430 15% 37,597 79%
Denial of Service 0 0% 0 0% 0 0% 0 0% 485 1% 880 1% 0 0% 2,555 5% 11,621 24% 12,419 26%
Front Running 0 0% 0 0% 0 0% 2,015 4% 0 0% 0 0% 7,217 15% 0 0% 0 0% 8,161 17%
Reentrancy 19 0% 0 0% 2 0% 8,454 17% 496 1% 308 0% 2,033 4% 8,764 18% 847 1% 14,747 31%
Time Manipulation 0 0% 0 0% 90 0% 0 0% 1,470 3% 1,452 3% 0 0% 1,988 4% 68 0% 4,069 8%
Unchecked Low
Calls

0 0% 0 0% 4 0% 443 0% 0 0% 0 0% 592 1% 12,199 25% 2,867 6% 14,656 30%

Unknown Un-
knows

26 0% 135 0% 1,032 2% 11,126 23% 0 0% 0 0% 561 1% 9,133 19% 14,113 29% 28,355 59%

Total 46 0% 179 0% 1,203 2% 22,994 48% 14,665 30% 34,764 73% 8,781 18% 22,269 46% 24,906 52% 44,589 93%

2015-07 2016-012016-07 2017-012017-07 2018-012018-07 2019-012019-07

Creation date

0

10000

20000

30000

40000

#
C
on

tr
ac
ts

Unknown Unknowns

Access Control

Arithmetic

Denial of Service

Front Running

Reentrancy

Time Manipulation

Unchecked Low Level Calls

Contracts

Figure 2: Evolution of number of vulnerabilities over time.

It is followed by the Reentrancy category with 133 contracts receiv-
ing a consensus of four tools or more. These results suggest that
combining several of these tools may yield more accurate results,
with less false positives and negatives.

The tool HoneyBadger is different: instead of detecting vulnera-
bilities, it detects malicious contracts that try to imitate vulnerable
contracts in order to attract transactions to their honeypots. There-
fore, when HoneyBadger is detecting a Reentrancy vulnerability, it
means that the contract looks vulnerable to Reentrancy but it is
not. Figure 1 shows that 15 contracts identified by HoneyBadger
with vulnerabilities of type Reentrancy have been detected by three
other tools as Reentrancy vulnerable.

We also analyzed the evolution of the vulnerabilities over time.
Figure 2 presents the evolution of the number of vulnerabilities
by category. It firstly shows the total number of unique contracts
started to increase exponentially at the end of 2017 when Ether
was at its highest value. Secondly, we can observe two main groups
of curves. The first one contains the categories Arithmetic and
Unknown Unknowns. These two categories follow the curve of the
total number of contracts. The second group contains the other
categories. The growing number of vulnerable contracts seems
to slow down from July 2018. Finally, this figure shows that the

Figure 3: Correlation between the number of vulnerabilities

and balance in Wei (one Ether is 1018 Wei).

evolution of categories Reentrancy and Unchecked Low Level Calls
is extremely similar (the green line of Reentrancy is also hidden
by the blue line of Unchecked Low Level Calls). This indicates that
there is a strong correlation between vulnerabilities in these two
categories.

And lastly, Figure 3 presents the correlation between the number
of vulnerabilities and the balance of the contracts. It shows that the
contracts that have a balance between 1014 Wei and 1020 Wei have
more vulnerabilities than other contracts. Hence, the richest and
the middle class seem to be less impacted. Per category, we have
not observed any significant differences worth reporting.

Answer to RQ2. How many vulnerabilities are present in

the Ethereum blockchain? The 9 tools identify vulnerabilities
in 93% of the contracts, which suggests a high number of false
positives. Oyente, alone, detects vulnerabilities in 73% of the con-
tracts. By combining the tools to create a consensus, we observe
that only a few number of vulnerabilities received a consensus of
four or more tools: 937 for Arithmetic and 133 for Reentrancy.

3.3 Execution Time of the Analysis Tools (RQ3)

In this section, we present the execution time required by the tools
to analyze the 47,518 of the sbwild dataset (see Section 2.3.2). In
order to measure the time of the execution, we recorded for each
individual analysis when it started and when it ended. The duration
of the analysis is the difference between the starting time and the
ending time. An individual execution is composed of the following
steps: 1) start the Docker image and bind the contract to the Docker
instance; 2) clean the Docker container; and 3) parse and output
the logs to the results folder.

Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts

Table 8 presents the average and total times used by each tool. In
the table, we can observe three different groups of execution time:
the tools that take a few seconds to execute, the tools that take a few
minutes andManticore that takes 24 minutes. Oyente, Osiris, Slither,
Smartcheck, and Solhint are much faster tools that take between 5
and 30 seconds on average to analyze a smart contract.HoneyBadger,
Maian,Mythril, and Securify are slower and take between 1m24s and
6m37s to execute. Finally, Manticore takes 24m28s. The difference
in execution time between the tools is dependent on the technique
that each tool uses. Pure static analysis tools such as Smartcheck
and Slither are really fast since they only parse the AST of the
contract to identify vulnerabilities and bad practices. These tools
are still able to flag vulnerabilities as presented in RQ2.

Securify, Maian, Mythril, and Manticore analyze the EVM byte-
code of the contracts. It means that those tools require the contract
to be compiled before doing the analysis. The additional compila-
tion step slows down the analysis.Manticore is the slowest of all the
tools because this tool only analyzes an internal contract at a time
(Solidity source files can contain an arbitrary number of contract
definitions). Consequently, this tool has the major drawback of
having the compilation overhead for each internal contract that it
analyzes.

The average execution time does not reflect the complete picture
of the performance of a tool. For example, Maian and Manticore
use several processes, and Maian uses up to 16GB of RAM. Conse-
quently, Maian and Manticore are difficult to parallelize. We were
able to run only four, and ten parallel executions for respectively
Maian and Manticore on a 32-core server with 30GB of RAM. This
also explains why we were not able to execute those two tools on
the complete dataset of 47,518 smart contracts.

Interestingly, the slowest tools do not have better accuracy (see
Section 3.1). Mythril, for example, which has the best accuracy
according to our evaluation, takes on average of 1m24s to analyze a
contract. It is much faster thanManticore that only has an accuracy
of 11% compared to the 27% of Mythril.

The execution time ofMaian is surprising compared to the results
that have been presented in the Maian paper [32]. Indeed, the
authors claimed that it takes on average 10 seconds to analyze a
contract while we observe that it takes 5m16s in our experiment on
similar hardware. The difference in execution times can potentially
be explained by the difference of input uses in the two experiments.
We use the source code of the contract as input, andMaian’s authors
use the bytecode. The overhead for the compilation of the contract
seems to be the major cost of execution for this tool.

Answer to RQ3. How long do the tools require to analyze

the smart contracts? On average, the tools take 4m31s to an-
alyze one contract. However, the execution time largely varies
between the tools. Slither is the fastest tool and takes on average
only 5 seconds to analyze a contract.Manticore is the slowest tool.
It takes on average 24m28s to analyze a contract. We also observe
that the execution speed is not the only factor that impacts the
performance of the tools. Securify took more time to execute
than Maian, but Securify can easily be parallelized and therefore
analyze the 47,518 much faster than Maian. Finally, we have not
observed a correlation between accuracy and execution time.

Table 8: Average execution time for each tool

Tools Execution time
Average Total

1 Honeybadger 0:01:38 23 days, 13:40:00
2 Maian 0:05:16 49 days, 10:06:15
3 Manticore 0:24:28 184 days, 01:59:02
4 Mythril 0:01:24 46 days, 07:46:55
5 Osiris 0:00:34 18 days, 10:19:01
6 Oyente 0:00:30 16 days, 04:50:11
7 Securify 0:06:37 217 days, 22:46:26
8 Slither 0:00:05 2 days, 15:09:36
9 Smartcheck 0:00:10 5 days, 12:33:14

Total 0:04:31 564 days, 3:10:39

4 DISCUSSION

We discuss the practical implications of our findings from the previ-
ous section, as well as outline the potential threats to their validity.

4.1 Practical Implications and Challenges

Despite the advances in automatic analysis tools of smart contracts
during the last couple of years, the practical implication our study
highlights is that that there remain several open challenges to be
tackled by future work. We identify four core challenges: increasing
and ensuring the quality of the analysis, extending the scope of
problems addressed by these tools, integrating the analysis into the
development process, and extending the current taxonomy.

Quality: This challenge is about increasing the likelihood that
a tool identifies real vulnerabilities, yielding close to zero false
positives and false negatives. Our study demonstrates that this is
far from being the case, and future work should be invested in
improving the quality of the tools. Addressing this challenge is
perhaps an important step toward real-life adoption of these tools
and techniques.

Scope: Although there might not be a technique that finds all
sorts of vulnerabilities, this challenge is about further extending
existing techniques so that more real vulnerabilities can be found.
In the previous section, we briefly discussed a potential way to
address this challenge: crafting a novel technique combining com-
plementary tools. Combining static with dynamic analysis might
also be an interesting avenue for future work.

Development process: This challenge is about integrating these
tools into the development process, thus contributing to real-life
adoption. To ease the interaction of developers with these tools,
hence making them useful during the development life-cycle, the
following could bring added value: integration with other orthog-
onal techniques (such as bug detection tools, dynamic analysis
techniques, and generic linters), integration with popular IDEs, in-
teractive reports (e.g., highlight vulnerable code), and explainable
warnings.

Taxonomy: Another practical implication of our work is that the
current state-of-the-art set of 10 categories in DASP10 does not
seem to be comprehensive enough to cover all vulnerabilities that
affect smart contracts deployed in Ethereum. DASP10 includes the
category Unknown Unknowns, because as the creators of the DASP

Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz

taxonomy observed, as long as investors decide to place large amounts
of money on complex but lightly-audited code, we will continue to see
new discoveries leading to dire consequences. Our work sheds light
on potential new categories that could extend DASP10, such as
Dependence on environment data and Locked Ether. The latter could
include not only the cases where Ether is locked indefinitely, but
also cases of Honeypots as defined by Torres et al. [41] (since Ether
becomes locked, except for the attacker). Our findings suggest new
categories comparable to those proposed in the recent survey by
Chen et al. [7] (available online on August 13, 2019).

4.2 Threats to Validity

A potential threat to the internal validity is that, due to the com-
plexity of the SmartBugs framework, there may remain an imple-
mentation bug somewhere in the codebase. We extensively tested
the framework to mitigate this risk. Furthermore, the framework
and the raw data are publicly available for other researchers and
potential users to check the validity of the results.

A potential threat to the external validity is related to the fact that
the set of smart contracts we have considered in this study may not
be an accurate representation of the set of vulnerabilities that can
happen during development. We attempt to reduce the selection
bias by leveraging a large collection of real, reproducible smart
contracts. Another potential threat is that we may have missed
a tool or failed to reproduce a tool that excels all other tools. To
mitigate this risk, we contacted the authors of the tools if no source
code was found. We also aim to reduce threats to external validity
and ensure the reproducibility of our evaluation by providing the
source of our instrumentation tool, the scripts used to run the
evaluation, and all data gathered.

A potential threat to the construct validity relates to the fact that
we needed to manually label the vulnerable smart contracts into
one of the DASP categories, and these could be mislabeled. This
risk was mitigated as follows: all authors labeled the contracts, and
then disagreements were discussed to reach a consensus. Another
potential threat to the validity is the timeout used for the analysis:
30 minutes. This threat was mitigated by executing all the tools on
the sbcurated dataset.

5 RELATEDWORK

As discussed in Section 2.2, there are several automated analysis
tools available. Notwithstanding, despite the recent increase interest
in the analysis of smart contracts, to the best of our knowledge,
our work is the first systematic comparison of recently proposed
techniques to better understand their real capabilities.

Datasets and Repositories: Reproducibility is enabled by a bench-
mark containing smart contracts that other researchers can
use off-the-shelf. There are just a few repositories of smart
contracts available to the research community, such as VeriS-
martBench11, evm-analyzer-benchmark-suite12, EthBench13, smart-
contract-benchmark14, and not-so-smart-contracts15. These, how-
ever, are essentially collections of contracts and are not designed
to enable reproducibility nor to facilitate comparison of research.
Our dataset sbcurated offers a known vulnerability taxonomy, po-
sitioning itself as a reference dataset to the research community.

Empirical studies: Chen et al. [8] discussed an empirical study on
code smells for Ethereum smart contracts. Based on posts from Stack
Exchange and real-world smart contracts, they defined 20 distinct
code smells for smart contracts and categorized them into security,
architecture, and usability issues. Furthermore, they manually la-
beled a dataset of smart contracts.16 Pinna et al. [36] performed a
comprehensive empirical study of smart contracts deployed on the
Ethereum blockchain with the objective to provide an overview
of smart contracts features, such as type of transactions, the role
of the development community, and the source code characteris-
tics. Parizi et al. [34] carried out an experimental assessment of
static smart contracts security testing tools. They tested Mythril,
Oyente, Securify, and Smartcheck on ten real-world smart contracts.
Concerning the accuracy of the tools, Mythril was found to be the
most accurate. Our results corroborate the findings, but in a more
systematic and comprehensive manner.

Execution Frameworks: Execution frameworks to simplify and
automate the execution of smart contract analysis tools are scarce.
Solhydra [10] is a CLI tool to analyze Solidity smart contracts with
several static analysis tools. It generates a report with results of
the tool analysis. Unlike SmartBugs, which was designed to ease
the addition of new analysis tools, Solhydra does not offer this
flexibility. Furthermore, Solhydra has not been updated in more
than a year.

6 CONCLUSION

In this paper, we presented an empirical evaluation of 9 static anal-
ysis tools on 69 annotated vulnerable contracts and on 47,518 con-
tracts taken from the Ethereum’s network. The goal of this ex-
periment was to obtain an overview of the current state of static
analysis tools for Ethereum smart contracts. During this empirical
evaluation, we considered all available smart contracts analysis
tools and all the available Ethereum contracts that have at least
one transaction. We used the DASP10 category of smart contract
vulnerabilities as the reference to classify vulnerabilities.

We found out that the current state of the art is not able to
detect vulnerabilities from two categories of DASP10: Bad Random-
ness and Short Addresses. Also, the tools are only able to detect
together 48/115 (42%) of the vulnerabilities from our sbcurated
dataset. Mythril is the tool that has the higher accuracy and his
able to detect 31/115 (27%) of the vulnerabilities.

During the evaluation of the 9 tools on sbwild, we observe that
97% of the contracts are identified as vulnerable. This suggests a
considerable number of false positives. Oyente plays an important
role in this, since it detects vulnerabilities in 73% of the contracts,
mostly due to Arithmetic vulnerabilities (72%). Finally, we observe
that the tools (4 or more) succeed to find a consensus for 937 Arith-
metic vulnerabilities and 133 Reentrancy vulnerabilities.

We argue that the execution framework and the two new datasets
presented here are valuable assets for driving reproducible research
in automated analysis of smart contracts.
11VeriSmartBench: https://github.com/soohoio/VeriSmartBench
12evm-analyzer-benchmark-suite: https://github.com/ConsenSys/evm-analyzer-
benchmark-suite
13EthBench: https://github.com/seresistvanandras/EthBench
14smart-contract-benchmark: https://github.com/hrishioa/smart-contract-benchmark
15not-so-smart-contracts: https://github.com/crytic/not-so-smart-contracts
16CodeSmell: https://github.com/CodeSmell2019/CodeSmell

https://github.com/soohoio/VeriSmartBench
https://github.com/ConsenSys/evm-analyzer-benchmark-suite
https://github.com/ConsenSys/evm-analyzer-benchmark-suite
https://github.com/seresistvanandras/EthBench
https://github.com/hrishioa/smart-contract-benchmark
https://github.com/crytic/not-so-smart-contracts
https://github.com/CodeSmell2019/CodeSmell

Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts

ACKNOWLEDGMENTS

This work has been co-funded by the European Union’s Horizon
2020 research and innovation programme under the QualiChain
project, Grant Agreement No 822404 and supported by national
funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference UID/CEC/50021/2019 and PTDC/CCI-COM/29300/2017.

REFERENCES

[1] Elvira Albert, Pablo Gordillo, Benjamin Livshits, Albert Rubio, and Ilya Sergey.
2018. EthIR: A Framework for High-Level Analysis of Ethereum Bytecode. In
Automated Technology for Verification and Analysis, Shuvendu K. Lahiri and Chao
Wang (Eds.). Springer International Publishing, Cham, 513–520.

[2] Shaun Azzopardi, Joshua Ellul, and Gordon J. Pace. 2018. Monitoring Smart
Contracts: ContractLarva and Open Challenges Beyond. In Runtime Verification,
Christian Colombo and Martin Leucker (Eds.). Springer International Publishing,
Cham, 113–137.

[3] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, et al. 2016. Formal verification of smart
contracts: Short paper. In Proceedings of the 2016 ACMWorkshop on Programming
Languages and Analysis for Security. ACM, New York, NY, USA, 91–96.

[4] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A scalable security
analysis framework for smart contracts. arXiv:1809.03981

[5] Vitalik Buterin et al. 2013. Ethereum white paper. GitHub repository 1, GitHub
(2013), 22–23.

[6] Jialiang Chang, Bo Gao, Hao Xiao, Jun Sun, and Zijiang Yang. 2018. sCompile:
Critical path identification and analysis for smart contracts. arXiv:1808.00624

[7] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2019. A
Survey on Ethereum Systems Security: Vulnerabilities, Attacks and Defenses.
arXiv:1908.04507

[8] Jiachi Chen, Xin Xia, David Lo, John Grundy, Daniel Xiapu Luo, and Ting Chen.
2019. Domain Specific Code Smells in Smart Contracts. arXiv:arXiv:1905.01467

[9] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized
smart contracts devour your money. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, Klagenfurt,
Austria, 442–446.

[10] Blockchain Company. 2018. Solhydra. https://github.com/BlockChainCompany/
solhydra.

[11] Phil Daian. 2016. Analysis of the DAO exploit. http://hackingdistributed.com/
2016/06/18/analysis-of-the-dao-exploit/.

[12] M. di Angelo and G. Salzer. 2019. A Survey of Tools for Analyzing Ethereum Smart
Contracts. In 2019 IEEE International Conference on Decentralized Applications
and Infrastructures (DAPPCON). IEEE, Newark, CA, USA, USA, 69–78. https:
//doi.org/10.1109/DAPPCON.2019.00018

[13] Thomas Durieux, Jo ao F. Ferreira, Rui Abreu, and Pedro Cruz. 2019. SmartBugs
execution results. https://github.com/smartbugs/smartbugs-results.

[14] Thomas Durieux, Jo ao F. Ferreira, Rui Abreu, and Pedro Cruz. 2019. SmartBugs
repository. https://github.com/smartbugs/smartbugs.

[15] Thomas Durieux, Jo ao F. Ferreira, Rui Abreu, and Pedro Cruz. 2019. SmartBugs
Wild dataset. https://github.com/smartbugs/smartbugs-wild.

[16] Josselin Feist, Gustavo Greico, and Alex Groce. 2019. Slither: A Static Analysis
Framework for Smart Contracts. In Proceedings of the 2Nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB ’19). IEEE
Press, Piscataway, NJ, USA, 8–15. https://doi.org/10.1109/WETSEB.2019.00008

[17] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. 2018. Madmax: Surviving out-of-gas conditions in ethereum
smart contracts. Proceedings of the ACM on Programming Languages 2, OOPSLA
(2018), 116.

[18] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic
Framework for the Security Analysis of Ethereum Smart Contracts. In Principles
of Security and Trust, Lujo Bauer and Ralf Küsters (Eds.). Springer International
Publishing, Cham, 243–269.

[19] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic
Framework for the Security Analysis of Ethereum Smart Contracts. In Principles
of Security and Trust, Lujo Bauer and Ralf Küsters (Eds.). Springer International
Publishing, Cham, 243–269.

[20] Peter Hegedus. 2019. Towards analyzing the complexity landscape of solidity
based ethereum smart contracts. Technologies 7, 1 (2019), 6.

[21] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip
Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu,
et al. 2018. KEVM: A complete formal semantics of the ethereum virtual machine.
In 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, Oxford,
UK, 204–217.

[22] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. NDSS, San Diego, California, USA, 1–15.

[23] Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum
to Automatically Exploit Smart Contracts. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD, 1317–1333. https:
//www.usenix.org/conference/usenixsecurity18/presentation/krupp

[24] Shuvendu K Lahiri, Shuo Chen, Yuepeng Wang, and Isil Dillig. 2018. For-
mal Specification and Verification of Smart Contracts for Azure Blockchain.
arXiv:1812.08829

[25] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
Reguard: finding reentrancy bugs in smart contracts. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings. ACM,
New York, NY, USA, 65–68.

[26] Han Liu, Chao Liu, Wenqi Zhao, Yu Jiang, and Jiaguang Sun. 2018. S-gram:
towards semantic-aware security auditing for ethereum smart contracts. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, New York, NY, USA, 814–819.

[27] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. ACM, New York, NY, USA,
254–269.

[28] Anastasia Mavridou and Aron Laszka. 2018. Tool Demonstration: FSolidM for
Designing Secure Ethereum Smart Contracts. In Principles of Security and Trust,
Lujo Bauer and Ralf Küsters (Eds.). Springer International Publishing, Cham,
270–277.

[29] Evgeny Medvedev. 2018. Ethereum in BigQuery: a Public Dataset for smart
contract analytics. https://cloud.google.com/blog/products/data-analytics/
ethereum-bigquery-public-dataset-smart-contract-analytics.

[30] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A User-
Friendly Symbolic Execution Framework for Binaries and Smart Contracts.
arXiv:1907.03890

[31] Bernhard Mueller. 2018. Smashing ethereum smart contracts for fun and real
profit. In 9th Annual HITB Security Conference (HITBSecConf). HITB, Amsterdam,
Netherlands, 54.

[32] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings
of the 34th Annual Computer Security Applications Conference. ACM, New York,
NY, USA, 653–663.

[33] Robert Norvill, Beltran Borja Fiz Pontiveros, Radu State, and Andrea Cullen. 2018.
Visual emulation for Ethereum’s virtual machine. In NOMS 2018-2018 IEEE/IFIP
Network Operations and Management Symposium. IEEE, Taipei, Taiwan, 1–4.

[34] Reza M. Parizi, Ali Dehghantanha, Kim-Kwang Raymond Choo, and Amritraj
Singh. 2018. Empirical Vulnerability Analysis of Automated Smart Contracts
Security Testing on Blockchains. In Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering (CASCON ’18). IBM
Corp., Riverton, NJ, USA, 103–113. http://dl.acm.org/citation.cfm?id=3291291.
3291303

[35] Daniel Perez and Benjamin Livshits. 2019. Smart Contract Vulnerabilities: Does
Anyone Care? arXiv:1902.06710

[36] Andrea Pinna, Simona Ibba, Gavina Baralla, Roberto Tonelli, and Michele March-
esi. 2019. A Massive Analysis of Ethereum Smart Contracts Empirical Study and
Code Metrics. IEEE Access 7 (2019), 78194–78213.

[37] Matt Suiche. 2017. The $280M Ethereum’s Parity bug. https://blog.comae.io/the-
280m-ethereums-bug-f28e5de43513.

[38] Matt Suiche. 2017. Porosity: A decompiler for blockchain-based smart contracts
bytecode. DEF con 25 (2017), 11.

[39] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,
Evgeny Marchenko, and Yaroslav Alexandrov. 2018. Smartcheck: Static analysis
of ethereum smart contracts. In 2018 IEEE/ACM 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, Gothen-
burg, Sweden, Sweden, 9–16.

[40] Christof Ferreira Torres, Julian Schütte, et al. 2018. Osiris: Hunting for integer
bugs in ethereum smart contracts. In Proceedings of the 34th Annual Computer
Security Applications Conference. ACM, New York, NY, USA, 664–676.

[41] Christof Ferreira Torres, Mathis Steichen, and Radu State. 2019. The Art of The
Scam: Demystifying Honeypots in Ethereum Smart Contracts. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,
1591–1607. https://www.usenix.org/conference/usenixsecurity19/presentation/
ferreira

[42] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, New York, NY, USA, 67–82.

[43] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and H. Kurihara. 2018.
Security Assurance for Smart Contract. In 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS). IEEE, Paris, France, 1–5.

http://arxiv.org/abs/1809.03981
http://arxiv.org/abs/1808.00624
http://arxiv.org/abs/1908.04507
http://arxiv.org/abs/arXiv:1905.01467
https://github.com/BlockChainCompany/solhydra
https://github.com/BlockChainCompany/solhydra
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1109/DAPPCON.2019.00018
https://github.com/smartbugs/smartbugs-results
https://github.com/smartbugs/smartbugs
https://github.com/smartbugs/smartbugs-wild
https://doi.org/10.1109/WETSEB.2019.00008
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
http://arxiv.org/abs/1812.08829
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
http://arxiv.org/abs/1907.03890
http://dl.acm.org/citation.cfm?id=3291291.3291303
http://dl.acm.org/citation.cfm?id=3291291.3291303
http://arxiv.org/abs/1902.06710
https://blog.comae.io/the-280m-ethereums-bug-f28e5de43513
https://blog.comae.io/the-280m-ethereums-bug-f28e5de43513
https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira
https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira

Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz

https://doi.org/10.1109/NTMS.2018.8328743
[44] Yi Zhou, Deepak Kumar, Surya Bakshi, JoshuaMason, AndrewMiller, andMichael

Bailey. 2018. Erays: Reverse Engineering Ethereum’s Opaque Smart Contracts. In

27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Bal-
timore, MD, 1371–1385. https://www.usenix.org/conference/usenixsecurity18/
presentation/zhou

https://doi.org/10.1109/NTMS.2018.8328743
https://www.usenix.org/conference/usenixsecurity18/presentation/zhou
https://www.usenix.org/conference/usenixsecurity18/presentation/zhou

