
Integrating Pseudo-Boolean Constraint Reasoning
in Multi-Objective Evolutionary Algorithms

Miguel Terra-Neves1,2 , Inês Lynce1 , Vasco Manquinho1
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Abstract
Constraint-based reasoning methods thrive in solv-
ing problem instances with a tight solution space.
On the other hand, evolutionary algorithms are usu-
ally effective when it is not hard to satisfy the prob-
lem constraints. This dichotomy has been observed
in many optimization problems. In the particular
case of Multi-Objective Combinatorial Optimiza-
tion (MOCO), new recently proposed constraint-
based algorithms have been shown to outperform
more established evolutionary approaches when a
given problem instance is hard to satisfy.
In this paper, we propose the integration of
constraint-based procedures in evolutionary algo-
rithms for solving MOCO. First, a new core-based
smart mutation operator is applied to individuals
that do not satisfy all problem constraints. Addi-
tionally, a new smart improvement operator based
on Minimal Correction Subsets is used to improve
the quality of the population. Experimental results
clearly show that the integration of these operators
greatly improves multi-objective evolutionary algo-
rithms MOEA/D and NSGAII. Moreover, even on
problem instances with a tight solution space, the
newly proposed algorithms outperform the state-of-
the-art constraint-based approaches for MOCO.

1 Introduction
In several real-world problems (e.g. software product
lines [Henard et al., 2015] or virtual machine consolidation in
data centers [Zheng et al., 2016]), there are several conflicting
objectives to be optimized such that a set of Boolean linear
constraints must be satisfied. These Multi-Objective Combi-
natorial Optimization (MOCO) problems have multiple op-
timal solutions, known as Pareto optimal solutions, each of
them favoring certain objectives at the expense of others. The
enumeration of all Pareto optimal solutions is known to be
very hard. In practice, most algorithms can only approximate
the Pareto front, i.e. the set of all Pareto optimal solutions.

Multi-Objective Evolutionary Algorithms (MOEAs) have
been at the forefront for solving MOCO problems [Deb et al.,
2000; Zhang and Li, 2007; Zheng et al., 2016]. However, in

problem instances where it is hard to satisfy all problem con-
straints, the performance of MOEAs starts to decline. On the
other hand, recently proposed constraint-based methods [Soh
et al., 2017; Terra-Neves et al., 2018] thrive in solving tightly
constrained instances. This duality, between evolutionary al-
gorithms and constraint-based methods, motivated the selec-
tive integration of constraint solving in MOEAs [Henard et
al., 2015; Xiang et al., 2018].

In previous works, MOEA tools use a constraint solver for
correcting individuals or adding diversity to the population.
An individual corresponds to a complete assignment to all
problem variables. Given a complete assignment that does
not satisfy all problem constraints, a partial assignment can
be generated by unassigning the variables in unsatisfied con-
straints, while the remaining variables are fixed. Next, a con-
straint solver is used to extend the partial assignment into a
complete satisfying assignment. As a result, a new feasible
individual is added to the population. However, in general,
there is no guarantee that the partial assignment can be ex-
tended to satisfy all problem constraints. In this paper, we
propose a core-based approach to solve this issue.

The main contributions of the paper are: (1) a new core-
based smart mutation operator that corrects individuals in any
MOEA for MOCO; (2) a novel smart improvement opera-
tor based on Minimal Correction Subsets (MCSs); (3) the us-
age of incremental solving to avoid the constraint solver from
generating the same individual; and (4) an extensive experi-
mental evaluation showing that MOEA solvers with the pro-
posed operators can outperform both the classic MOEA tools
and recently proposed constraint-based solvers for MOCO.

The paper is organized as follows. Section 2 defines
MOCO and MCS, and briefly reviews MOEAs and the virtual
machine consolidation problem. Next, Section 3 describes
the new core-based smart mutation operator, while Section 4
proposes the usage of smart improvements using MCSs. Sec-
tion 5 presents an extensive experimental evaluation of the
proposed techniques and the paper concludes in Section 6.

2 Preliminaries
This section starts by describing MOCO and MOEAs. Next,
MCS based approaches for MOCO solving are introduced.
Finally, we describe Virtual Machine Consolidation (VMC),
a multi-objective benchmark problem used to evaluate the
smart evolutionary operators proposed in this paper.



2.1 Multi-Objective Combinatorial Optimization
Let X = {x1, . . . , xn} be a set of n Boolean variables. A
literal is either a variable xi or its complement xi. Given
a set of m literals l1, . . . , lm and respective coefficients
ω1, . . . , ωm ∈ N, a Pseudo-Boolean (PB) expression is a
weighted sum of literals

∑m
i=1 ωi ·li. Given an integer k ∈ N,

a linear PB constraint has the form:
m∑
i=1

ωi · li ./ k, ./ ∈ {≤,≥,=}. (1)

Note that a clause (l1 ∨ · · · ∨ lm) is equivalent to the PB con-
straint (

∑m
i=1 li ≥ 1). In some cases, we use clause notation

for ease of explanation.
Given a set φ = {c1, . . . , cm} of m PB constraints, the

Pseudo-Boolean Satisfiability (PBS) problem consists of de-
ciding if there exists a complete assignment α : X → {0, 1}
that satisfies all constraints in φ. If that is the case, we say
that φ is satisfiable and α is a model of φ, denoted α(φ) = 1.
If α does not satisfy φ, we say that α is unfeasible, denoted
α(φ) = 0. If φ is unsatisfiable, then α(φ) = 0 for any as-
signment α. An instance of the Pseudo-Boolean Optimiza-
tion (PBO) problem [Boros and Hammer, 2002] is a pair
Φ = (φ, f(X)), where φ = {c1, . . . , cm} is a set of m PB
constraints and f(X) is a PB expression representing a cost
function. The goal is to find a model α of φ that minimizes
its cost, denoted as f(α).
Example 2.1 Let (φ, f(X)) denote a PBO instance where
φ = {x1 + x2 + x3 ≥ 2, x1 + x2 = 1} and f(X) = x1 +
2x2 + 3x3. In this case, an optimal solution would be α =
{(x1, 1), (x2, 0), (x3, 1)} with an overall cost of 4.

In this work, we consider that a MOCO [Ulungu and
Teghem, 1994] instance is a pair Φ = (φ, F (X)), where
φ is a set of PB constraints to satisfy and F (X) =
(f1(X), . . . , fk(X)) is a vector of k PB expressions to min-
imize, defined over a set X of Boolean variables. Given a
complete assignment α such that α(φ) = 1, its cost vector is
defined as F (α) = (f1(α), . . . , fk(α)). Let α and α′ be two
distinct complete assignments such that α(φ) = α′(φ) = 1.
We say that F (α) dominates F (α′) (α dominates α′), de-
noted F (α) ≺ F (α′) (α ≺ α′), if and only if fi(α) ≤ fi(α′)
for all i = 1..k and fj(α) < fj(α

′) for some j = 1..k. The
Pareto front PΦ of Φ is the set of its nondominated cost vec-
tors, i.e., F (α) ∈ PΦ if and only if α(φ) = 1 and no α′ exists
such that α′(φ) = 1 and F (α′) ≺ F (α). α is said to be a
Pareto-optimal solution of Φ if and only if F (α) ∈ PΦ. In
MOCO, the goal is to find the Pareto front of Φ.
Example 2.2 Let (φ, F (X)) denote a MOCO instance where
φ = {x1 + x2 + x3 ≥ 2} and F (X) = (f1(X), f2(X)) =
(2x1 + x2, 2x2 + 2x3). In this case, there are two Pareto
optimal solutions: α1 = {(x1, 0), (x2, 1), (x3, 1)} with costs
(1, 2) and α2 = {(x1, 1), (x2, 1), (x3, 0)} with costs (3, 0).
Note that α1 provides a better value for f1, while α2 is able
to improve on f2. All other satisfiable assignments to φ are
dominated by either α1 or α2.

For most problems, it is not possible to enumerate all
Pareto optimal solutions PΦ in a reasonable amount of time.
Therefore, we focus on finding a set of solutions that best ap-
proximates the Pareto front PΦ within a given time limit.

Algorithm 1: Typical MOEA framework for MOCO
Input: Φ = (φ, F (X))

1 P ← InitialSolutions(Φ)
2 while stopping criteria not triggered do
3 Q← GenerateOffsprings(P)
4 P ← SelectSurvivors(P,Q)

5 return FilterDominated(P)

2.2 Multi-Objective Evolutionary Algorithms
The typical MOEA framework is presented in Algorithm 1.
Such algorithms maintain a fixed size population P of com-
plete assignments, referred to as individuals. At each itera-
tion, referred to as a generation, a set Q of |P | offsprings is
generated by applying crossover and mutation operators to se-
lected individuals in P (line 3). Then, |P | individuals among
P and Q are selected to become the population in next gen-
eration (line 4). This process is repeated until some stopping
criteria is met (e.g. number of generations, time limit, etc).

The crossover operator produces a new offspring α from
two individuals α1 and α2 by mixing their variable assign-
ments. For example, given some variable x ∈ X , uniform
crossover [Spears and De Jong, 1995; Syswerda, 1989] has a
fixed probability (typically 0.5) of setting α(x) = α1(x), oth-
erwise it sets α(x) = α2(x). Note that crossover is applied
with a given probability pcr, referred to as crossover rate, and
therefore, with probability 1 − pcr, α is a clone of either α1

or α2 instead. The mutation operator produces an offspring
α′ by applying perturbations (e.g. flipping the values of some
variables) to an individual α. Similarly to crossover, the fre-
quency of mutation is also controlled by a configurable muta-
tion rate pmr. Note that crossover and mutation may produce
unfeasible individuals. In this work, the three feasibility rules
of Deb [2000] are employed to handle constraints in MOEAs:
(1) if two individuals are feasible, the best one is chosen; (2)
if one individual is feasible and the other is not, the feasible
one is chosen; (3) if two individuals are infeasible, the one
with the smallest degree of constraint violation is chosen.

MOEAs employ a ranking scheme to define probabilities
for individuals to participate in crossover/mutation and de-
cide which individuals survive to the next generation. Typ-
ically, the ranking scheme is the main distinguishing factor
between MOEAs, while the crossover/mutation operators re-
main the same. A good ranking scheme should promote fast
convergence and ensure that the final population is well dis-
tributed. For example, NSGAII [Deb et al., 2000] is a pop-
ular genetic algorithm that favors nondominated individuals
with cost vectors in less crowded areas of the cost space. In
MOEA/D [Zhang and Li, 2007], each individual is assigned
a scalarized single-objective version of the multi-objective
problem. An individual is replaced by offsprings with smaller
costs in regard to its scalarized problem.

2.3 Unsatisfiable Cores and Minimal Correction
Subsets

Let φ be an unsatisfiable set of PB constraints. A subset
φC ⊆ φ is an unsatisfiable core of φ if and only if φC is
also unsatisfiable.



Let φH and φS be sets of hard and soft PB constraints,
respectively, such that φH is satisfiable and φH ∪φS is unsat-
isfiable. Note that all hard constraints must be satisfied. On
the other hand, soft constraints are not required to be satis-
fied, but the goal is to satisfy as many as possible. A subset
C ⊆ φS is an MCS if and only if φH ∪ (φS \C) is satisfiable
and φH ∪ (φS \ C) ∪ {c} is unsatisfiable for all c ∈ C.

Example 2.3 Let φH = {x1 +x2 +x3 ≥ 2, x1 +x2 = 1} be
the set of hard constraints and φS = {x1 = 0, x2 = 0, x3 =
0} the set of soft constraints. In this case, we have two MCS:
C1 = {x1 = 0, x3 = 0} and C2 = {x2 = 0, x3 = 0}.

Several techniques exist in the literature for computing un-
satisfiable cores [Goldberg and Novikov, 2003; Dershowitz et
al., 2006] and MCSs [Bailey and Stuckey, 2005; Felfernig et
al., 2012; Marques-Silva et al., 2013; Mencı́a et al., 2015].
MCSs can be used to find approximate solutions of PBO in-
stances as follows. Let Φ = (φ, f(X)) be a PBO instance,
where f(X) =

∑m
i=1 ωi · li. Let Lf =

⋃m
i=1{(li)} denote

the set of clauses built from the negation of the literals that
appear in f(X). We set φH = φ and φS = Lf and obtain
an MCS C through the application of an MCS algorithm. We
abuse notation and use f(C) to denote the cost of C, defined
as follows: f(C) =

∑
(li)∈C ωi.

Observe that any complete assignment α that satisfies φ ∪
(Lf \ C) will have cost f(α) = f(C), which provides an
approximation of the optimal cost for Φ. Actually, any PBO
instance can be reduced to finding the MCS C ⊆ Lf with
minimum value of f(C) [Birnbaum and Lozinskii, 2003].

Recently, it was shown that MCSs can also be used to find
the Pareto front of MOCO instances. Let Φ = (φ, F (X)) be
a MOCO instance with F (X) = (f1(X), . . . , fk(X)), and
LF =

⋃k
i=1 Lfi . Terra-Neves et al. [2017] proved that one

can find PΦ by setting φH = φ and using an MCS algorithm
to enumerate the MCSs of LF .

Example 2.4 The MOCO instance (φ, (f1(X), f2(X)))
from example 2.2 can be solved through MCS-enumeration
as follows. Let φH = φ and let Lf1 = {x1, x2} and
Lf2 = {x2, x3} derived from f1(X) and f2(X) as described.
Consider LF = Lf1 ∪ Lf2 the set of soft constraints. Next,
enumerate the MCSs of (φH , LF ). In this case, the MCSs
corresponding to the Pareto frontier would be C1 = {x1, x2}
and C2 = {x2, x3}. C3 = {x1, x2, x3} is also an MCS, but
its solution is dominated by the solution of C1.

2.4 Virtual Machine Consolidation
In this section the Virtual Machine Consolidation (VMC)
problem is introduced, since it will be used in Sections 3
and 4 for a better understanding of the new operators. More-
over, VMC instances will also be used to evaluate the perfor-
mance of the operators proposed in this work. VMC is a well
known resource allocation problem that arises in the context
of a cloud provider, where a set of running Virtual Machines
(VMs) must be allocated to the servers in a data center. All
VMs must be placed in some server, while minimizing energy
consumption, resource wastage and VM migration costs.

The VM placement is subject to the following constraints:
(1) each VM must be placed in exactly one server; (2) the total

resource requirements (e.g. CPU, memory, etc) of the VMs
placed in some server cannot exceed its resource capacities;
(3) some VMs belong to the same job and must be placed
in different servers in order to achieve higher levels of fault
tolerance; and (4) the VM migration costs cannot exceed a
given fixed migration budget enforced by the cloud provider.
In this paper, we focus solely on VM placement variable en-
codings. The interested reader is referred to the literature for
further details on the mathematical formulation of the VMC
problem’s constraints and objectives [Zheng et al., 2016;
Terra-Neves et al., 2017].

Consider a set V = {v1, . . . , vm} of m VMs and a set
S = {s1, . . . , sn} of n servers. An integer variable xIi is
introduced for each VM vi ∈ V , with domain {1, . . . , n}.
The value of xIi indicates the server that accommodates vi,
i.e., xIi = j means that vi is placed in sj . We consider this
encoding for the individuals in a MOEA’s population. Hence,
the crossover of two individuals α1 and α2 produces a new
individual α12 with approximately half of the VMs placed
as in α1 and the remaining ones as in α2. The mutation of
α12 corresponds to picking a VM v at random and choosing
a random server to accommodate v.

However, the smart operators proposed in this paper re-
quire all variables to be Boolean. For each VM-server pair
vi ∈ V and sj ∈ S, we introduce a Boolean variable xBi,j
that indicates whether vi is placed in server sj . Therefore, if
xIi = j, we have xBi,j = 1 and xBi,k = 0 for all k 6= j and
vice-versa. A different encoding is used in the evolutionary
algorithm because the integer encoding naturally captures the
constraint that each VM must be placed in exactly one server,
improving the performance of the evolutionary process. Ide-
ally, the MOEA should also operate on the Boolean encoding
in order to better generalize to other kinds of MOCO prob-
lems, but the purpose of this paper is to highlight the benefits
of combining MOEAs with logic-based methods, and thus we
leave its generalization for future work.

3 Smart Mutation
Smart mutation is the process of using a constraint solver to
turn an unfeasible individual of a MOEA’s population into a
feasible one. Given an unfeasible individual, smart mutation
finds a set of variable assignments that are not responsible for
constraint violations, enforces those assignments, and uses a
constraint solver to assign the remaining variables, thus pro-
ducing a feasible individual.

Smart mutation was recently proposed by Henard et
al. [2015] in the context of Software Product Line Config-
uration (SPLC). The constraints of an SPLC instance can be
expressed as a set of clauses, and thus the authors proposed
the SATIBEA algorithm, which uses a Boolean satisfiabil-
ity solver within IBEA [Zitzler and Künzli, 2004] to correct
unfeasible individuals. Given such an individual, SATIBEA
considers the assignments of variables appearing in unsat-
isfied clauses to be the ones responsible for constraint vio-
lations. Although this rule suffices for the SPLC problem,
it does not generalize to other applications, specially when
more general types of constraints are involved, such as PB
constraints. Hence, in general, SATIBEA’s smart mutation



Algorithm 2: Generalized smart mutation
Input: φ, α

1 XA ← InitAssigned(φ, α)
2 φA ←

⋃
x∈XA,α(x)=1{(x)} ∪

⋃
x∈XA,α(x)=0{(x)}

3 while not SAT(φ ∪ φA) do
4 φC ← UnsatCore(φ ∪ φA)
5 φA ← φA \ (φC ∩ φA)

6 αfeasible ← Model(φ ∪ φA)
7 return αfeasible

operator is not guaranteed to produce a feasible individual.
We propose a generalized smart mutation operator that,

given a set of constraints φ and an individual α, it uses un-
satisfiable cores to determine which variable assignments in
α are responsible for constraint violations. Its pseudo-code is
presented in Algorithm 2. It starts by initializing a set XA of
variables that are believed to not be responsible for α’s con-
straint violations (line 1). Then, a set φA is built with clauses
enforcing the partial assignment that results from restricting
α to the variables in XA (line 2). A PBS oracle is used to
check if φ ∪ φA is satisfiable (line 3), in which case a model
of φ ∪ φA is returned as the new individual (line 6). Other-
wise, a core of φ ∪ φA is extracted (line 4) and the clauses
of φA present in the core are removed from φA (line 5). This
process is repeated until φ ∪ φA becomes satisfiable.

In line 1, XA can be initialized with all problem variables
and let generalized smart mutation itself determine the vari-
ables responsible for constraint violations using unsatisfiable
cores. However, one may speed-up the process by exploiting
domain knowledge to initialize XA. For VMC, we unassign
the following variables: (1) all variables of VMs placed in
servers with overloaded resource capacities; (2) all variables
of VMs of the same job placed in the same server; (3) all vari-
ables of migrated VMs if the migration budget is exceeded.

Given a model α, we prevent smart mutation from
producing α again in the future by adding the clause
(
∨
x∈X,α(x)=1 x∨

∨
x∈X,α(x)=0 x) to φ. As a result, our smart

mutation operator works in an incremental way and adds di-
versity to the population by ensuring to always produce a dif-
ferent individual. Although very unlikely, if the smart mu-
tation operator produces a core φC such that φC ∩ φA = ∅,
then we know that the whole feasible search space has been
explored and the MOEA can be terminated.

Note that PBS is an NP-Hard problem [Roussel and Man-
quinho, 2009]. Therefore, smart mutation should be executed
sparingly. Otherwise, most of the time will be spent on the
PBS oracle instead of evolving the population. The frequency
of smart mutation is controlled through a configurable smart
mutation rate psmr. Additionally, in order to prevent smart
mutation from wasting unreasonable amounts of time on hard
PBS instances, one may impose a configurable conflict1 bud-
get bsm on each run of smart mutation. If the oracle exhausts
that budget, smart mutation is interrupted and the original un-

1Modern PB solvers apply an adaptation of the conflict-driven
DPLL procedure used in state-of-the-art Boolean satisfiability
solvers [Roussel and Manquinho, 2009].

Algorithm 3: Smart improvement

Input: φ,LF , α
1 XA ← InitAssigned(φ,LF , α)
2 φA ←

⋃
x∈XA,α(x)=1{(x)} ∪

⋃
x∈XA,α(x)=0{(x)}

3 C ← MCS(φ ∪ φA, LF)
4 αimproved ← Model(φ ∪ φA ∪ (LF \ C))
5 return αimproved

feasible individual is returned instead.

4 Smart Improvement
We propose a novel smart improvement operator, inspired on
MCS-based algorithms for enumerating the Pareto front of
MOCO instances [Terra-Neves et al., 2017]. Given a feasi-
ble individual α, smart improvement uses an MCS oracle to
produce a similar offspring α′. This process is outlined in Al-
gorithm 3. First, similarly to smart mutation, we build a set
φA of clauses enforcing a subset of α’s variable assignments
(lines 1 and 2). In VMC, this step corresponds to selecting a
subset of VMs to relocate and enforcing the variables of the
remaining VMs. We select relocating VMs randomly with
probability given by a configurable relaxation rate prr. Then,
an MCS oracle is invoked with φH = φ ∪ φA and φS = LF ,
producing an MCSC (line 3). Finally, the improved offspring
is a model of φ ∪ φA ∪ (LF \ C) (line 4). Similarly to smart
mutation, the clause (

∨
(l)∈C l) is added to φ to prevent smart

improvement from producing C again in the future.
Observe that φH = φ ∪ φA is defined as the set of hard

constraints given to the MCS algorithm. In our incremental
implementation, a new blocking clause is added to φ when-
ever a new solution is found in the smart mutation operator,
or when a new MCS is generated. As a result, there is no
guarantee that φH is satisfiable. In those situations, no new
offspring is generated. Note also that finding an MCS is NP-
Hard. Hence, as in smart mutation, a conflict budget bsi is
imposed on each smart improvement run.

Any MCS algorithm can be used in the smart improvement
operator. In this work, MCSs are computed using the Strat-
ified CLD (SCLD) algorithm for MOCO proposed by Terra-
Neves et al. [2018]. SCLD first splits the literals in LF into
a sequence of partitions P1 . . . Pk. The partitioning is such
that the literals in the first few partitions are the ones with the
highest impact on the cost function values. Then, for each
partition Pi, SCLD sets φH = φ ∪ φA ∪

⋃i−1
j=1(Pj \ Cj) and

φS = Pi, where Cj is the MCS computed at iteration j, and
uses CLD to compute Ci. In the end, C =

⋃k
j=1 Cj is an

MCS for φH = φ ∪ φA and φS = LF .

5 Experimental Results
This section evaluates the performance of the smart opera-
tors proposed in Sections 3 and 4 on instances of the VMC
problem. We consider the benchmark set publicly available
on the DOME project website2. The smart operators were

2http://sat.inesc-id.pt/dome



implemented in the VMAlloc solver3, a collection of algo-
rithms for solving instances of the VMC problem which in-
cludes implementations of MOEA/D [Zhang and Li, 2007],
NSGAII [Deb et al., 2000] and SCLD. PBS instances were
solved using Sat4j [Le Berre and Parrain, 2010]4. We evalu-
ate the impact of the smart operators on the performance of
NSGAII and MOEA/D, and make a comparison with SCLD
as well. All algorithms were configured as suggested in the
literature [Terra-Neves et al., 2017; Terra-Neves et al., 2018].
Smart mutation was applied to each offspring produced by
the regular genetic operators with probability psmr = 0.01.
If the offspring was already feasible, smart improvement was
used instead with relaxation rate prr = 0.2. Conflict budgets
were set as follows: bsm = 20000 and bsi = 500000.

The quality of the Pareto front approximations was evalu-
ated using the Inverted Generational Distance (IGD) [Coello
Coello and Sierra, 2004] and Hypervolume (HV) [Zitzler,
1999] performance metrics. IGD is a combined measure
of convergence and diversity. Given some approximation
P , IGD measures the average Euclidean distance from the
cost vectors in some reference front PR (ideally the Pareto
front if known) to the closest vector in P . Smaller values of
IGD indicate that the approximation is composed of solutions
of higher quality in terms of convergence and/or diversity.
We combined the approximations produced by all algorithms
evaluated in this section to build the reference fronts for each
VMC instance. HV is another combined metric that measures
the volume of the cost space dominated by the approximation
P , up to a given reference point, and thus larger values are
preferred. All cost vectors in P and PR are normalized be-
fore computing IGD and HV. The reference point coordinates
for HV are set to 1 + 1

|PR| .
We consider one additional metric, based on the primal in-

tegral used in the evaluation of mixed integer programming
heuristics [Berthold, 2013], referred to as Unfeasible Integral
(UI). Let u(t) denote the number of unfeasible solutions in
the population observed at instant t during the execution of
some MOEA. Assuming a time limit of T seconds, the UI is
the integral of u(t), in interval [0, T ], divided by T . Smaller
values of UI indicate that the algorithm maintains a larger av-
erage count of feasible individuals in the population through-
out its execution. Observe that, in order to perform a fair
comparison, UI should only be considered if the population
size is the same for all algorithms (100 in this evaluation).

Each algorithm was executed 10 times with different seeds
for each instance, and the analysis is performed using the
median values over all executions. Statistical tests were per-
formed with confidence intervals of 95% in order to assess
the significance of the results. These were successful for at
least 60% of all instances for all algorithm pairs. Memory and
time limits of 4 GB and 1800 seconds respectively were used.
The evaluation was conducted on an AMD Opteron 6376 (2.3
GHz) with 128 GB of RAM, running Debian jessie.

Figures 1 to 9 show the median UI, IGD and HV dis-
tributions obtained with each algorithm for VMC instances
with migration budgets equal to 100%, 5% and 1% of the

3https://github.com/MiguelTerraNeves/VMAlloc
4https://gitlab.ow2.org/sat4j/sat4j (27 Jan. 2019)

data centers total memory capacity. We refer to NSGAII
(MOEA/D) with smart mutation enabled as NSGAII-SM
(MOEA/D-SM). NSGAII-SI (MOEA/D-SI) corresponds to
NSGAII (MOEA/D) with smart mutation plus improvement.
A point (x, y) in an UI/IGD (HV) distribution plot indicates
that the given algorithm obtained an UI/IGD (HV) equal to
or lower (greater) than y for x instances. For example, the
point (100, 81) on MOEA/D-SM’s line in Figure 1 indicates
that MOEA/D-SM obtained UIs equal to or smaller than 81
for 100 instances. In order to improve the readability of Fig-
ures 4 to 6, we only display IGD values up to 1.2.

5.1 Impact of Smart Mutation
Figures 2 and 3 show that, in the 5% and 1% migration budget
instances, smart mutation significantly improves the number
of feasible solutions in the population for both MOEA/D and
NSGAII. Moreover, we have also observed a faster conver-
gence when smart mutation is used, since feasible individuals
are found in earlier iterations of MOEA/D and NSGAII. Be-
cause the constraints of the 100% instances are easier to sat-
isfy, we observe a lack of improvement in Figure 1. MOEA/D
and NSGAII are already able to find many feasible solutions
for the 100% instances without smart mutation, and smart
operators are significantly slower than typical genetic oper-
ators. Nonetheless, NSGAII-SM is able to find feasible solu-
tions for all 300 100% instances, 28 (64) more than NSGAII
(MOEA/D). MOEA/D-SM does so for 297 of those instances.

In Figures 5, 6, 8 and 9, we can see a significant improve-
ment in terms of IGD and HV for both NSGAII-SM and
MOEA/D-SM for the 5% and 1% instances. Therefore, by
injecting the population with feasible solutions, smart muta-
tion enables the MOEAs to find high quality Pareto front ap-
proximations and even outperform SCLD, the state-of-the-art
for such instances. Figures 4 and 7 show that smart mutation
barely impacts the performance of MOEA/D in the 100% in-
stances. However, we see some performance degradation for
NSGAII. We can conclude that smart mutation improves the
performance of MOEAs in tightly constrained problems, at
the expense of some performance in loosely constrained ones.

5.2 Impact of Smart Improvement
Figures 1 to 3 show a degradation in terms of UI when
smart improvement is enabled. This is expected since smart
improvement is much more expensive than smart mutation,
and thus less time is spent searching for feasible solutions.
Nonetheless, the number of instances for which at least one
feasible solution is found is similar with and without smart
improvement. Moreover, Figures 4 to 9 show a considerable
improvement for both MOEA/D-SI and NSGAII-SI in terms
of approximation quality, particularly in HV. Not only does
smart improvement enhances the performance in tightly con-
strained instances, it compensates for the performance degra-
dation observed in loosely constrained ones for NSGAII.

6 Conclusion and Future Work
Recently, constraint-based methods for MOCO have been
shown to outperform state-of-the-art evolutionary algorithms,
such as NSGAII and MOEA/D, when the problem’s con-
straints are hard to satisfy [Terra-Neves et al., 2018].



Figure 1: UI distributions (100%). Figure 2: UI distributions (5%). Figure 3: UI distributions (1%).

Figure 4: IGD distributions (100%). Figure 5: IGD distributions (5%). Figure 6: IGD distributions (1%).

Figure 7: HV distributions (100%). Figure 8: HV distributions (5%). Figure 9: HV distributions (1%).

Following previous work on using constraint solvers in
MOEAs [Henard et al., 2015; Xiang et al., 2018], we propose
a generalized smart mutation operator for correcting unfeasi-
ble individuals, and a smart improvement operator that uses
MCSs to improve already feasible individuals. Experimental
results in a large set of VMC instances show that the com-
bination of evolution and constraint solving significantly out-
performs pure evolutionary and constraint-based approaches.

Recall that, currently, an integer encoding for individuals is
used that is more suitable for VMC than a Boolean encoding.
As future work, we propose to evaluate the performance of
the Boolean encoding and investigate possible new encodings
suitable for Boolean MOCOs. Moreover, general heuristics

should be developed for the assigned variable initialization
step of the smart mutation and improvement procedures. One
should also explore deeper integration between MOEAs and
constraint solvers (e.g. exploiting the scalarization weights
when applying smart improvement within MOEA/D). Lastly,
the performance of these techniques should be evaluated on
other MOCO benchmarks besides VMC, such as SPLC.
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	Introduction
	Preliminaries
	Multi-Objective Combinatorial Optimization
	Multi-Objective Evolutionary Algorithms
	Unsatisfiable Cores and Minimal Correction Subsets
	Virtual Machine Consolidation

	Smart Mutation
	Smart Improvement
	Experimental Results
	Impact of Smart Mutation
	Impact of Smart Improvement

	Conclusion and Future Work

