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a b s t r a c t

Despite the positive contributions of controllable electric loads such as electric vehicles (EV) and heat
pumps (HP) in providing demand-side flexibility, uncoordinated operation of these loads may lead to
congestions at distribution networks. This paper aims to propose a market-based mechanism to alleviate
distribution network congestions through a centralized coordinated home energy management system
(HEMS). In this model, the distribution system operator (DSO) implements dynamic tariffs (DT) and daily
power-based network tariffs (DPT) tomanage congestions induced by EVs andHPs. In this framework, the
HP and EV loads are directly controlled by the retail electricity provider (REP). As DT and DPT price signals
target the aggregated nodal demand, the individual uncoordinated HEMS models operating under these
price signals are unable to effectively alleviate congestion. A large number of flexible residential customers
with EV and HP loads are modeled in this paper, and the REP schedules the consumption based on the
comfort preferences of the customers through HEMS. The effectiveness of the market-based concept
in managing the congestion is demonstrated by using the IEEE 33-bus distribution system with 706
residential customers. The case study results show that considering both pricing systems can considerably
mitigate the overloading occurrences in distribution lines, while applying DTs without considering DPTs
may lead to severe overloading occurrences at some periods.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Modern power systems are moving toward smart grids with
a high penetration level of distributed generation (DG) units [1].
The number of controllable loads, such as electric vehicles (EV)
and heat pumps (HP), is also constantly increasing in the grid [2].
Increased use of these potentially flexible loads is changing the
daily electricity demand profile of consumers. Besides these tech-
nological changes in power grids, there has been a trend toward
electricity market liberalization at wholesale and retail level. The
liberalization reform, particularly at the retail level, encourages
retail electricity providers (REP) to offer time variable rates to their
clients.

This gradual transition in power systems is creating serious op-
erational challenges for distribution systems [3]. Although the DG
units help bypassing congestions in existing transmission grids [4],
excessive power generation from DGs can cause congestion in
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distribution systems [5]. High demand due to EVs and HPs can also
potentially cause overloading of the electricity lines. The distribu-
tion system operator (DSO) is confronted with congestion issues
when a large number of these loads draws electricity from the
grid simultaneously [6]. Uncoordinated operation of these flex-
ible loads can cause unexpected congestions in the distribution
system [5]. Real-time pricing (RTP) schemes offered by REPs in
liberalized markets can also increase congestions in distribution
systems by creating new peak demands in response to the time
variable tariffs. The new peaks may cause overloading of lines and
transformers [1].

Resolving the distribution grid congestion is considered as one
of the main duties of DSOs [7]. In long-term planning, the DSO can
reinforce the distribution grid according to the identified needs in
order to avoid possible congestions in future [8]. It can increase
the grid capacity through boosting the investments in the grid
infrastructure [6]. The congestionmanagement strategies in short-
term are usually divided into three categories, which are distri-
bution system reconfiguration (i.e., switch operation), direct load
control and market-based mechanisms [1]. Market-based mecha-
nisms compared to other two methods are more effective in the
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Nomenclature

Indices

t Time intervals.
c Consumers/houses
b Buses.
v EVs.
m Operating modes of the HPs.

Variables

Payoff Payoff of the REP during the scheduling
horizon [e].

θ in
c Indoor temperature of house c [◦C].
Q HP
c Heat flow of the HP of house c [W].

Q Loss
c Heat loss of house c [W].

pc Daily consumption schedule of house c
[kWh].

pPeakb Daily peak demand at bus b [kW]
pFlexiblec Flexible demand schedule of house c

[kWh].
pb Aggregated demand at bus b [kWh]
λ
Congestion
b DTs for congestion at bus b [e/kWh]

λLMP
b Local marginal price (LMP) at bus b

[e/kWh]
PCh/Dch

v Charging/discharging power of EV v
[kW].

xChv Charging status of EV v (1 if the EV is
charging and 0 otherwise).

xDchv Discharging status of EV v (1 if the EV is
discharging and 0 otherwise).

SoCv State of charge (SoC) of EV v in the end
of time interval t [kWh].

f HPc Total air mass of the HP [kg/h]
f HPc,m Air mass flow at modem [kg/h]
Ψ Lagrangian function of DSO’s problem.

Parameters

γ Retail rates for the end-users [e/kWh].
λP Predicted day-ahead market price

[e/kWh].
λDPT
b Daily power-based network tariff (DPT)

at bus b [e/kWh].
θ out Outdoor forecasted temperature [◦C].
µc Total indoor air mass of house c [kg].
χ air Air heat capacity at standard conditions

[J/kg ◦C].
ΦHP

c Air mass flow of the HP at house c [kg/h]
ΦHP

c,m Maximum air mass flow at mode m
[kg/h]

ρHP
c Power per air mass flow of the HP

[Wh/kg]
κc Heat loss factor of house c [W/◦C].
τ Time interval duration [h].
pFirmc Predicted firm load of house c [kWh].

restructured electricity market environment. They can maximize
the social welfare while causing least discomfort to customers and
they can also enable the customers and the DGs to participate in
the distribution network energy planning procedure [7]. Through

η
Ch/Dch
v Charging/discharging efficiency of EV v.

SoCd
v Expected SoC of EV v at the departure

time [kWh].
αv Arrival time of EV v.
βv Departure time of the EV v.
SoCMin/Max

v Minimum/Maximum SoC level of EV v
[kWh].

θ
Low/Up
c Lower/upper bound of the indoor tem-

perature of house c [◦C].
θ
ref
c Reference indoor temperature of house c

[◦C].
PForecasted
b Forecasted demand at bus b [kWh].

GSFk−b Generation shift factor to line k from bus
b.

limitk Active power transmission limit of line k
[kW].

GMin/Max
b Minimum/maximum generation output

at bus b [kWh].

Sets

T Time periods in the scheduling horizon.
K Branches in the distribution network.
B Buses in the distribution network.
Tv Tv ⊆ T is the set of periods in which

EV v is connected to the grid; Tv =

{t ∈ T:αv ≤ t ≤ βv}.
Th Th ⊆ T is the set of periods that are

within hour h.
C All consumers served by the REP.
Cb Consumers located at bus b.
ΩEV EVs operating under HEMS.
Ωc

EV EVs owned by consumer c.
Mc

HP Modes of the HP owned by consumer c.

market-based mechanisms, the DSO can harness the benefits of
demand-side flexibility to face the challenges of the evolving elec-
tricity networks [9].

There are several technical and regulatory limitations for the
DSO to directly control numerous flexible loads or to offer other
types of demand response (DR) programs to electricity end-users
[5,10]. REP is an ideal entity to offer DR programs to retail cus-
tomers. They are the economic entities in the distribution network
that purchase electricity in the wholesale market at volatile prices
and sell to end-users at fixed rates [1]. They shield their clients
against price variations in the wholesale market.

One of the riskmanagement strategies of REPs is employing the
demand-side resources. They can control the consumption of their
clients’ appliances to avoid more purchases from themarket when
the prices are high and in exchange offer more profitable contracts
to their customers for their economic compensations [1]. REPs as
commercial entities have a greater incentive for maximizing the
payoff, compared to individual end-users. Therefore, implement-
ing DR by themwill lead to a higher elasticity of demand andmore
effective response to price signals [10]. In short-term consumption
scheduling of the household appliances, the objective of the REP is
to maximize its payoff [1]. This paper aims to develop a market-
based mechanism for DSOs to alleviate congestions in distribution
network through a coordinated home energymanagement system
(HEMS) which is centrally controlled by REPs.

The concept of nodal pricing has been extended from trans-
mission systems to distribution systems to reduce line losses and
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improve the voltage profile by rewarding the DGs [11] or to op-
timally allocate the DG units in the distribution network [12–14].
Nodal pricing was first used in distribution networks to handle the
congestion problems in gridswith high penetration of DG units [7].

This pricing mechanism was later used in some existing liter-
ature to address the congestion due to flexible demands in dis-
tribution networks [1,5,7,8,10,15,16]. A step-wise dynamic tariff
(DT) scheme is developed by O’Connell et al. [10] to manage the
congestion in distribution networks due to the EVdemand. TheDTs
were calculated from the distribution locational marginal prices
(LMP). In this decentralized control manner, the aggregators de-
termine the energy plan of the EVs without taking the network
constraints into consideration and the network constraint infor-
mation is incorporated in the DTs. This method does not consider
the inter-temporal characteristics of the EVs. Li et al. [15] also used
distribution LMPs determined by the DSO as price signals for EV
aggregators. The DSO determines the distribution LMPs by solving
the social welfare optimization problem. A nonlinear optimization
model was used to compute the prices. These models are only
practically applicable when the DSO has access to the details of
individual EVs [15,16]. To overcome this drawback in this paper,
REPs are considered as an intermediary entity between the DSO
and the consumers which access to the consumption data of the
end-users and the details of individual EVs.

In the market-based mechanism developed by Liu et al. [1] to
manage the distribution systemcongestions, household appliances
with flexible demand such as EV and HP were selected as DR
sources and the aggregators control their consumption based on
distribution congestion prices. The distribution congestion prices
are published by the DSO in advance. The objective of the aggrega-
tors was to maximize their total payoff.

Huang et al. [7] presented a quadratic programming model
to alleviate the congestions in distribution networks with high
penetration of flexible demand through introducing distribution
LMPs. This paper proved that the distribution LMP concept is valid
with the cost functions having quadratic terms reflecting the price
sensitivity of the DGs. Moreover, the capability of this concept in
addressing the congestion issue in distribution networks caused
by diverse flexible load characteristics was proved.

Liu et al. [8] implemented the distribution LMP method via
a chance constrained mixed-integer quadratic programming to
manage congestions in distribution networks with high penetra-
tion of EVs. In this model, both DSO and the aggregators were
involved in stochastic features of the EVs’ driving pattern. Deal-
ing with the stochastic features of EVs for DSO gets difficult in
networks with high penetration of EVs and several aggregator
players. A bi-level optimization model for day-ahead congestion
managementwas developed byNi et al. [5]. Uncertainties of theDG
units and market prices were considered in a robust optimization
model.

REPs can deploy the demand-side flexibility through coordinat-
ing the HEMSs of the end-users and applying the DTs in scheduling
the consumption. HEMS can be implemented either centralized or
decentralized [17]. In the decentralized HEMS models, consump-
tion scheduling and control is done locally at the end-users’ points.
Fotouhi Ghazvini et al. [18] proposed a decentralized HEMSmodel
which schedules the household consumption based on the price
signals received from the REP. The customers in decentralized
HEMS models minimize their own energy costs considering the
time variable price signals and the model is based on transactions
between REPs and consumers [17]. Decentralized HEMS models
can lead to additional peak loads [17], and without a coordinating
control system which can link the individual HEMSs together they
cannot be used effectively for congestion management. Chang
et al. [19] developed a decentralized coordinated HEMS in which
distributed HEMSs can collaborate with each other. The purpose

of the collaboration is to keep demand supply balanced in their
neighborhood. REPs send the price signals to theHEMSs. Themodel
is proposed to avoid the rebound effect of the uncoordinated oper-
ation of individual HEMSs in a neighborhood on the aggregate de-
mand profile. Although consumption scheduling is done locally in
this model, consumers are modeled in a way not behave selfishly.
Andersen et al. [20] presented the model of a virtual power plant
to implement a centralized control of a large number of houses
with HPs. Themain focuswas put on the virtual power plant setup.
However, themodel is also usable under different pricing schemes.

In this paper, the DSO implements a market-based mechanism
to manage the congestion in distribution network. The concept of
economic signaling performed by the DSO involves the REPs in
congestion management. The DSO offers DPT and DT to influence
the consumption. DTs are elements of LMPs in the distribution
network. The LMPs are calculated with optimal power flow mod-
els, considering the expected nodal consumptions. Load control is
performed by REPs through a centralized coordinated HEMS. They
aggregate the flexible demand of their clients. This coordination
procedure addresses the limitations of both the DSO and the REPs
for executingDR programs. DSOs usually lack the direct interaction
and financial relationship with end-users, and REPs lack the access
to grid information.

In this paper, consumption scheduling is carried out by the REP
based on the requirements of the users without sacrificing the
comfort and convenience. The REP plays the role of a demand ser-
vice provider, and takes into account the preferences of the users.
The price signals sent by the DSO also influence the schedules. It is
assumed that the payoff maximization is the main objective of the
REP. It uses the flexibility provided by the consumers in short-term.
Customers are rewarded for the flexibility that they provide. Pay-
ment to the consumers is not considered in this model and it does
not influence the outcomes of this research as it has focusedmainly
on a market-based mechanism used by the DSO. It is assumed that
the REP pays the consumers later in proportion to the amount of
flexibility that they have provided. Several approaches have been
proposed in the literature to formulate this interaction [21,22].

In the existing works on demand-side management for allevi-
ating the congestion in distribution networks induced from con-
trollable loads there is no comparison among DTs and DPTs. While
the majority of previous works consider only one pricing scheme
for congestion alleviation, there is a lack of studies assessing the
impact of other pricing schemes rather than the dynamic tariffs.
In order to fill this gap in the literature, a centralized coordinated
HEMS operated by REPs is developed, which has the potential to
reschedule the consumption based onDTs andDPTs. Therefore, the
main contributions of this paper are as follows:

• Development of a market-based mechanism for congestion
management, which enables the DSO to control the overload-
ing at distribution lines by offering DTs and DPTs.

• Development of a centralized coordinatedHEMSmodelwhich
is managed by the REP and uses the controllable devices of
the users, considering the residential buildings as energy hub
with thermal storage capability.

The rest of this paper is organized as follows. In Section 2,
the concept of centralized coordinated HEMS and the detailed
characterization of each controllable load are described. The im-
pact of DTs is not incorporated in this section. In Section 3, the
market-based mechanism is proposed. The DSO computes the DTs
and distributes it among the REPs. The HEMS model introduced
in Section 2 is then extended to incorporate the impact of DTs.
Simulations are performed in Section 4 and the performance of
the proposed mechanism for congestion alleviation is evaluated.
Conclusions are given in Section 5.



4 M.A. Fotouhi Ghazvini, G. Lipari, M. Pau et al. / Sustainable Energy, Grids and Networks 17 (2019) 100185

2. Coordinated HEMS model

Electricity loads can be classified as flexible and inflexible
loads. Inflexible loads or critical loads should be served by the
REP [23] without the possibility to change their consumption
pattern, whereas the flexible loads have the ability to reduce,
increase or defer their consumption in response to the economic
signals that the REP sends [24].

Themain assumption in thismodel is that the aggregation of the
flexible loads and the scheduling of their consumption is carried
out by the REP through a centralized coordinated HEMS. This duty
can also be met by an intermediary entity between customers
and the REPs, such as DR aggregators. However, changing this
assumption does not influence the main purpose of this model,
which is alleviating the congestion through DR implementation in
distribution networks.

It is worth noting that the active customers should be properly
compensated for providing this flexibility for REPs. In this model,
scheduling the consumption provides financial benefits for the
REPs and the customers’ benefit of DR is delivered to them via
the discounts in their monthly electricity bills. The customers with
whom the REP has contracted for providing flexibility should be
remunerated by the relevant REP through anumber ofmechanisms
which may include discounts on the retail rates or on the total
electricity bills. The payment method is agreed in the bilateral
contract between the customer and REP. Determining the optimal
payment method, as well as determining the optimal retail rates
are medium-term scheduling problems of the REPs and they are
not in the scope of this paper.

The electrification of the transportation system and space heat-
ing is a consequence of the policies to eliminate fossil fuels [25].
Although the energy efficient technologies such as EVs for the
transportation system and HPs for the space heating reduce the to-
tal energy demand, they will increase the electricity demand [26].
Some studies anticipate that full penetration of EVs and HPs will
result in a 50% increase in total electricity consumption and a 100%
increase in peak demand [25,27]. High penetration of such loads
can potentially create overloading in electricity lines [6], as well as
increasing the generation requirements [10]. These challenges are
even amplified when the consumption of these flexible loads react
to price signals, which will lead to a loss of diversity in the on/off
cycles and consequently increase the overloading of the electricity
lines [6]. The impact of this situation can be compared with the so-
called ‘‘cold load pick-up’’ effect after a blackout, whichwill lead to
a spike in demand due to loss of load diversity [6]. When the time
variable retail rates are high for several hours, the consumers may
postpone the flexible demand and when it reduces the demand
may exceed the prior demand [6].

On the other hand, high penetration of these loads in power
systems increase the DR potential [25]. Although they present a
challenge to distribution networks [28], they can offer means to
stabilize the distribution network by providing DR potential [29].
Therefore, a suitably conceived market-based mechanism can get
advantage from the flexibility provided by HPs and EVs to alleviate
congestions in the distribution system.

The energy requirements of loads can be procured through day-
aheadmarkets. REPs are commercial entities in electricity markets
which integrate the demand side resources and submit the bids
to the day-ahead market on behalf of the end-use private con-
sumers [5,7,10]. It is not practical for the numerous dispersed small
scale resources to directly participate in the wholesale market [5].
The REPs can gain profit by optimally scheduling the consumption
of the flexible loads [5]. At the same time, they can also contribute
in enabling secure and economic operation of the distribution
network [5].

The objective function (1) of the REP computes the total payoff
of the company over the scheduling horizon (Payoffi) and is deter-
mined by subtracting the cost of energy purchase at the wholesale
market from the sales to end-users. It is assumed that the REP in
this model is price taker.

Maximize Payoff =

∑
t∈T

∑
c∈C

(
γc(t) − λP (t)

)
· pc(t) · τ (1)

It is assumed that each consumer in this model is a house.
Therefore, the index c is used to represent both consumers and
houses. The predicted day-ahead market price is shown with λP

and the retail rate for each consumer is shownwith γc . Retail rates
can be time variable same as the wholesale market prices and they
also may change among the household consumers served by REP
(C), depending on the type of the contract that has beenmadewith
the REP. Even in a same node the REPmight offer different tariffs to
consumers. The consumption schedule profile of consumer c (pc) is
composed of the firm load (PFirm

c ) and the flexible demand (pFlexiblec ):

pc(t) = PFirm
c (t) + pFlexiblec (t), ∀t ∈ T , ∀c ∈ C . (2)

The flexible demand is a variable and the components of this
profile are shown as:

pFlexiblec (t) = pHPc (t) +

∑
∀v∈Ωc

EV

(
pChv (t) − pDChv (t)

)
;

∀t ∈ T , ∀c ∈ C, (3)

where pHPc is the consumption of the HP located in house c, and pChv /
pDChv is the charging/discharging power of the EV v.

2.1. Constraints of EV scheduling

REPs schedule the charging and discharging of the EVs that are
registered for load control based on the permanent characteris-
tics of the EVs and the preferences of the owners for arrival and
departure time. Despite the uncontrolled charging of EVs which
charges the battery after being connected to the grid [30], themain
control variables in controlled charging scheme are the charging
and discharging power during each time period. It is essential to
keep them always within the admissible rates. This limitation is
formulated as follows:

0 ≤ pChv (t) ≤ PCh,Max
v · xChv (t); ∀v ∈ ΩEV , ∀t ∈ Tv, (4)

0 ≤ pDchv (t) ≤ PDch,Max
v · xDchv (t); ∀v ∈ ΩEV , ∀t ∈ Tv, (5)

where pCh,Max
v and pDCh,Max

v are respectively the maximum charging
and discharging rates. These rates are restricted by the maximum
acceptable charging power of EV battery, maximum power set by
the EV user and maximum power EV charger can output. Usually,
both the maximum power EV charger can output and the max-
imum power set by the EV user are greater than the maximum
acceptable charging power of the EV battery [31]. The discharged
power of the EVs can be used to serve part of the household
loads (i.e., vehicle-to-home) or to be injected back to the grid
(i.e., vehicle-to-grid) [18,32]. Simultaneous charging and discharg-
ing of EVs is avoided with the following constraint on the binary
variables xChv and xDchv :

xChv (t) + xDchv (t) ≤ 1, ∀v ∈ ΩEV , ∀t ∈ Tv. (6)

The EV’s State of charge (SoC) update function is represented as
follows:

SoCv(t) = SoC Initial
v + τ ·

[
ηCh · pChv (t) − pDchv (t)

]
;
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∀v ∈ ΩEV , t = αv. (7)

SoCv(t) = SoCv(t − 1) + τ ·
[
ηCh · pChv (t) − pDchv (t)

]
;

∀v ∈ ΩEV , ∀t ∈ Tv, t ̸= αv, (8)

where Eq. (7) calculates the SoC of the EV at the end of the first time
period after the arrival and Eq. (8) calculates the SoC of the EV v at
the end of the remaining time periods. The SoC of the EVs’ battery
should always bewithin a certain range, which is imposed through
the following inequality constraint:

SoCMin
v ≤ SoCv(t) ≤ SoCMax

v , ∀v ∈ ΩEV , ∀t ∈ Tv. (9)

Constraint (9) guarantees high battery efficiency during its’
lifetime [33]. Although an EV is very similar to a storage system,
in terms of operational scheduling, a few extra constraints should
be enforced for the charging/discharging status of EVs [33]. For
instance, they are only available between the arrival and departure
time of the EV (Tv) or the SoC of the EV should be at a specific
amount by the departure time. These two characteristics aremath-
ematically described as:

xChv (t) + xDchv (t) = 0; ∀v ∈ ΩEV , ∀t /∈ Tv, (10)

SoCv(t) = SoCd
v ; ∀v ∈ ΩEV , t = βv, (11)

where SoCd
v is the required energy level of the battery at the

departure time. Constraint (10) shows that during the periods that
the EV is not connected to the grid, charging and discharging tasks
cannot be performed. Constraint (11) enforces that the EV should
be charged to a specific amount when the user is taking the car for
daily trips.

2.2. Constraints of HP scheduling

The house temperature change among two consecutive time
periods is proportional to the difference between the heat flow
provided by the HP (Q HP

c ) and the heat losses (Q Loss
c ). The evolution

in time of the indoor temperature due to the heat flow/loss is
shown by [34,35]:

θ in
c (t) − θ in

c (t − 1) =
τ

µc · χ air ·
(
Q HP
c (t) − Q Loss

c (t)
)
;

∀c ∈ C, ∀t ∈ T , (12)

where the indoor temperature of the house c is shown with θ in
c .

The total indoor air mass of the house (µc) depends on the char-
acteristics of the house, while χ air denotes the air heat capacity at
standard conditions. Constraint (13) represents the range of indoor
temperature allowed by the customer. θ Low

c and θUP
c are the lower

and upper bound of the indoor temperature which are set by the
end-user and can be time variable, depending on the preferences
of the user.

θ Low
c (t) ≤ θ in

c (t) ≤ θUp
c (t) (13)

The heat losses at each period are proportional to the difference
between indoor and outdoor temperature:

Q Loss
c (t) = κc ·

(
θ in
c (t − 1) − θ out (t − 1)

)
; ∀c ∈ C, ∀t ∈ T , (14)

where κc is the heat loss factor of the house and θ out is the outdoor
temperature [34]. The heat flow of the HP at each period is instead
given by:

Q HP
c (t) = χ air

· f HPc (t) ·
(
θHP
c − θ in

c (t − 1)
)
; ∀c ∈ C, ∀t ∈ T ,

(15)

where f HPc is the air mass flow of the HP delivered to the house
at the constant output temperature θHP

c of the HP. In (15), Instead

of using θ in
c , the reference temperature θ

ref
c of the house (defined

as the average between lower and upper boundary temperature)
can be used to maintain the linearity of the problem. Since the
indoor temperature should always remain in the comfort zone, this
approximation is acceptable.

The air mass flow of the HP can be divided into different op-
erating modes, based on the required power of the heat pump to
generate that flow. f HPc is considered as the summation of air mass
flows in different modes:

f HPc (t) =

∑
m∈Mc

HP

f HPc,m(t); ∀c ∈ C, ∀t ∈ T , (16)

where f HPc,m is the incremental air mass flow associated to each
operating mode. In each mode, the air mass flow should be within
the defined range:

0 ≤ f HPc,m(t) ≤ xHPc (t) ·ΦHP
c,m; ∀c ∈ C, ∀t ∈ T , ∀m ∈ Mc

HP ,m ̸= 1,

(17)

where xHPc is a binary decision variable which is 1 when the HP is
turned on and ΦHP

c,m is the maximum air mass flow at each mode.
The air mass flow in the first mode denotes the minimal air mass
flowof theHPwhen it is turned on. Therefore, f HPc,m for the firstmode
is computed as the following equality constraint:

f HPc,m(t) = xHPc (t) · ΦHP
c,m; ∀c ∈ C, ∀t ∈ T ,m = 1, (18)

The required power of the HP (pHPc ) is the summation of the
required power in each operation mode of the HP:

pHPc (t) =

∑
m∈Mc

HP

f HPc,m(t) · ρHP
c,m; ∀c ∈ C, ∀t ∈ T (19)

where ρHP
c,m is the power per air mass flow of each operating mode.

ρHP
c,m is monotonic increasing with the delivered air flow (ρHP

c,1 ≤

ρHP
c,2 ≤ · · · ).
Fig. 1 shows a schematic layout of the HEMS model. The inputs

that require a daily update are shown on the left, the built-in or
permanent characteristics of EV loads, HP loads and the houses are
represented in the middle and the outputs are in the right.

3. Market-based mechanism for congestion management

The regulatory enactments in liberalized markets form a hard
boundary that avoids the DSOs to enter direct load control demand
response programs to provide grid support services [36]. However,
the centralized control of the loads is an important requirement to
provide these services. The proposedmarket-based approach shifts
the responsibility of load control from the DSO to REPs. Without a
centralized load control, each user will need an energy manage-
ment system to manage the controllable loads. Moreover, the DSO
has to send the price signals to all users, andmore investments are
required to form this communication system. In the end, it will not
even guarantee that the outcome of the users’ individual energy
management systems can alleviate the congestion or reduce the
peak without creating new peaks in the system.

Implementingmarket-basedmechanisms by DSOs requires the
participation of other market entities located between consumers
and the DSO. REPs in this scheme are usually selected to manage
the flexibility from the residential end-users [37]. They play the
role of a demand response provider. Consumers are also more
willing to react to economic signals sent by the demand response
provider rather than being ordered to alter their consumption by
the system operator [1].
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Fig. 1. Schematic of the coordinated HEMS.

3.1. Dynamic tariffs

In thismodel, the DSO alleviates the congestion in a distribution
network through a decentralized approach [8]. The DSO calcu-
lates the DTs which reflect the distribution congestion prices and
provides the REPs that are serving customers in the distribution
network with this information [8]. The REPs individually perform
their own energy planning. They optimally schedule the flexible
consumption of their clients through the coordinated HEMS, con-
sidering the distribution congestion prices. Their bids in the day-
aheadmarket will be obtained based on this schedule. The conges-
tion prices are finally passed to the end-users [6]. The proposed
market-based mechanism for congestion management should be
completed before market clearing of the day-ahead markets [1].
The DSO uses the historical data to forecast the spot prices as
well as the flexible and firm demand [1]. It computes the DTs
considering these predicted values and the generation offers of the
DGs producing electricity inside the distribution network.

DTs that the DSO offers to REPs for congestion management
should reflect distribution congestion prices. Distribution conges-
tion price can be considered as an element of LMPs [1]. Using LMPs
in transmission systems is very common. They reflect themarginal
cost at each node of the grid, which also incorporates the extra
cost due to congestion and energy losses [1]. In this model, the
DSOusesDC optimal power flow (DCOPF) to formulate distribution
LMPs and obtain the nodal prices of active power [1,5]. With this
information, the DSO can attain the DTs. DCOPF is an efficient
technique to determine the active power flow in electricity lines [5,
10]. The power flow results obtained from DCOPF are close to
those obtained with ACOPF with much less computation time [5].
Therefore, it can be considered sufficient in many cases and sev-
eral well-known software tools have employed this technique for
chronological LMP simulation and forecasting [5]. Fig. 2 shows the
relationship between the DSO and the REPs. The DSO runs the OPF
and calculates the DTs based on predictions from the market and
the retail customers.

The proposed mechanism is a step-wise tariff scheme [10]. In
this scheme, system balance and distribution network congestion

are tackled independently. Congestion prices are determined by
the DSO. The DSO has to predict the total demand and also the day-
ahead market prices in order to determine the congestion prices.
This approach can be implemented directly in many European
electricity markets, unlike the integrated tariffs approach where
both system balance and grid congestion needs to be settled in a
single step [10].

As the marginal cost of losses does not influence the value
of DTs [10], a linearized lossless DC model of the network is
considered [38]. It is assumed that the loads can be fully served
through the wholesale market and, in the case of congestions, the
dispatchable DG units in the distribution network can be used. The
costs arise due to the congestion will be later compensated by the
consumers [10]. The objective function of the DSO for each time
period is to minimize the electricity supply cost in the distribution
network [1]:

Minimize Cost =

∑
b∈B

Cb(t) · pgb(t); ∀t ∈ T , (20)

where Cb is the cost of procuring electricity at each bus for the next
trading day. It is equal to day-ahead wholesale market price at the
bus connected to the transmission network and for other buses,
where a DG unit is connected, it is equal to the price that they
offer. The DCOPF problem meets the load in power system, while
minimizing the total operation cost in the network. It is subject to
the following energy balance and transmission constraints [38,39]:

∑
b∈B

pgb(t) =

∑
b∈B

PForecasted
b (t); ∀t ∈ T , (21)

∑
b∈B

GSFk−b ·
(
pgb(t) − PForecasted

b (t)
)

≤ Limitk; ∀t ∈ T , ∀k ∈ K

(22)

GMin
b ≤ pgb(t) ≤ GMax

b ; ∀b ∈ B, ∀t ∈ T (23)
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Fig. 2. Schematic of the proposed market mechanism.

In (21), PForecasted
b is considered as an input. DSO can use pre-

dicted values for this parameter or the results of the REPs’ initial
load scheduling.

The line flow limitation is represented with GSF in the DCOPF
problem. GSFk−b is the generation shift factor to line k from bus b,
which depends on the selection of the reference bus [40]. GSF is the
ratio of the change in power flow at line k to the variation in power
injection at bus b [41]. The reference bus in this set of formulations
is the bus connected to the transmission grid. However, it is worth
noting that the electricity flow limits in (22) are independent from
the reference bus choice [40]. Limitk is the line power flow limit at
line k.

LMP is composed of three elements: energy price, congestion
price and loss price [41]. In the DC lossless power flow, the loss
price is zero and therefore the LMP at each bus is composed of the
marginal price of generation at the reference bus and the marginal
congestion price at that node [42].

λLMP
b (t) = λEnergy(t) + λ

Congestion
b (t) + λLoss

b (t); ∀b ∈ B, ∀t ∈ T .

(24)

LMP at each bus of the distribution system can be attained by
solving the above DCOPFmodel. LMP at each bus ismathematically
defined as the dual variable of the power balance constraint at
that node [41]. The Lagrangian function of the DCOPF problem is
calculated as follows:

Ψ (t) =

(∑
b∈B

Cb(t) · pgb(t)

)
− ω(t)

·

(∑
b∈B

pgb(t) −

∑
b∈B

PForecasted
b (t)

)

−

∑
k∈K

µk(t) ·

(∑
b∈B

GSFk−b ·
(
pgb(t) − PForecasted

b (t)
)

−Limitk

)
; ∀t ∈ T

(25)

where ω and µk are respectively the Lagrangian multipliers of
constraints (21) and (22) [10]. The LMP is calculated as [10]:

λLMP
b (t) =

∂Ψ (t)
∂PForecasted

b (t)
= ω(t) +

∑
k∈K

µk(t) · GSFk−b;

∀b ∈ B, ∀t ∈ T . (26)

ω (t) is the locational marginal energy price and
∑

k∈K µk(t) ·

GSFk−b is the locational marginal congestion cost [10], which is
used by the DSO as the congestion prices. Thus, the congestion
price at each bus and each time period is calculated as:

λ
Congestion
b (t) =

∑
k∈K

µk(t) · GSFk−b; ∀b ∈ B, ∀t ∈ T . (27)

Charges appear when the electricity lines are constrained by
physical limits [41]. The congestion cost is associated with the line
flow constraints [42]. The DSO publishes these congestion costs
as DTs for the REPs to consider in the consumption scheduling
procedure to alleviate the possibility of congestion occurrences.

The REP incorporates the impact of DTs in its objective function
(1) and the consumption of household appliances is optimally
scheduled in response to price signals. The price signals are com-
posed of the DTs published by the DSO and the predicted day-
ahead market prices [10]. It is worth noting that despite the day-
ahead market price, which does not vary among nodes, the DT is
defined on the single nodes to alleviate the expected congestion.
The new objective function of the REP is as follows:

Maximize Payoffi =

∑
t∈T

∑
b∈B

∑
C∈Cb

(
γc(t) − λP (t) − λ

Congestion
b (t)

)
·pc(t) · τ . (28)

This DR scheme can be used as an alternative to RTP tariffs and
time-of-use (TOU) pricing schemes. This centralized coordinated
HEMS allows REPs to control flexible loads that are being served
under fixed retail tariffs.

The DTs increase the energy price for consumers during specific
hours, which can impact the consumption pattern of the users. The
end-users may prefer to shift their loads more to the periods with
lower prices, which may cause a rebound effect and create new
peak demands at periods not expected. Therefore, the DSO should
use price schemes that charge the end-users according to their
peak demand. Tariffs such as DPTs avoid peak demand spikes at
other periods.

3.2. Daily power-based network tariffs

Another pricing system to avoid congestion occurrences in dis-
tribution networks is to use DPTs [44], where the consumers are
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Fig. 3. IEEE 33-bus distribution system [43].

charged for the maximal power consumption [45]. This network
pricing scheme gives REPs an incentive to reduce the maximal
power consumption at each node [45]. Employing this pricing
system for consumers with an uncoordinated distributed HEMS is
not as efficient as using this schemewith a coordinated centralized
HEMS, because the maximal power use of customers may not
coincide with the aggregated peak-demand in the nodes of the
distribution network. This price system is being considered by
DSOs in many electricity markets [45]. The objective function of
the REP is in this case as follows:

Maximize Payoffi =

∑
t∈T

∑
b∈B

∑
C∈Cb

(
γc(t) − λP (t)

)
· pc(t) · τ

−

∑
b∈B

pPeakb · λDPT
b (29)

where pPeakb is the daily peak demand and λDPT
b is the DPT at bus b.

As the DSO runs the DCOPF with hourly time intervals, the pPeakb is
defined as:∑
t∈Th

pb(t) · τ ≤ pPeakb ; ∀h, ∀b. (30)

The DSO can apply both DTs and DPTs simultaneously. In this
case, the objective function of the REP is represented as:

Maximize Payoffi =

∑
t∈T

∑
b∈B

∑
C∈Cb

(
γc(t) − λP (t) − λ

Congestion
b (t)

)
·pc(t) · τ −

∑
b∈B

pPeakb · λDPT
b . (31)

4. Case study and discussion

The modified IEEE 33-bus distribution is used in this section to
validate the effectiveness of the proposedmethod. The topology of
the 12.66 kV system is shown in Fig. 3. This test system contains 30
load buses. In this case study, it is assumed that one REP is serving
all the residential customers. The distribution of the residential
customers among the buses of the distribution network is shown
in Fig. 4. In this test system 706 residential consumers are being
served by the REP. The scheduling horizon, which is 24 h, can
begin at any time of the day. In this paper, the starting time of
the scheduling is not necessarily at the beginning of the day. Time
intervals for the REP’s consumption scheduling is 15 min, and it
is 1 h for the DSO. Therefore, there are 96 time periods in the
consumption scheduling. The aggregated inflexible demandprofile
of the consumers and the hourly day-ahead market prices are
shown in Fig. 5. The inflexible demand is extracted considering a

Table 1
House models.
House models Heat loss factor of the house

[W/◦C]
Total indoor air mass of the
house [kg]

1 191,200 367.50
2 250,300 551.25
3 312,400 1960.00

standard aggregated pattern for residential customers related to a
typical working day in January, which is derived from a German
database [46]. The day-ahead market prices are taken from the
Iberian Electricity Market (Mibel) [47]. It is assumed that all cus-
tomers are being served at the fixed retail rate of 0.17 e/kWh.

All residential customers in this test system have EV and HP
loads. Several house models and EV types are listed in Tables 1 and
2. It is assumed that the residential consumers live in one of the
house models listed in Table 1 and own one of EV models shown
in Table 2. The house type and the EV model of each customers is
selected randomly. The heat loss factor of the house and the total
indoor airmass of the house depends on the geometric dimensions
of the house, including the characteristics of the walls and win-
dows [34].

It is assumed that the expected battery energy level of the EVs
at the departure time can be achieved at the interval that the EV is
connected to the grid. The average connection time of the EVs into
the grid is 45.61% of the scheduling horizon. The EV availability
during the scheduling horizon is shown in Fig. 6. The number of
time periods that different numbers of EVs are connected to the
grid is shown in this figure. It shows that during 19 timeperiods out
of the total 96 time slots, 70%–80% of the total number of EVs are
connected to the grid, and hence available for controlled charging.
The maximum availability occurs at time period 60 when 81.02%
of the EVs (e.g., 572 EVs) is connected to the grid. The mean arrival
time of EVs is at time period 31 ± 17 and mean departure time
is at 74 ± 17. Charging and discharging power can be scheduled
from zero to a maximumwhich is the charging/discharging rate of
the EV. It is assumed that the EV is charged constantly during each
15-minutes time interval.

The operation modes of the HPs are shown in Table 3. It is
assumed that all HPs are from the same models, but can function
at different operating points. The lower and upper indoor temper-
ature bound determined by the users are shown in Fig. 7. In this
figure, the hourly outdoor temperature for the 24 h scheduling
horizon is also shown.

The following four cases of consumption scheduling are studied
in this paper to provide a comparison between DTs and DPTs in
alleviating the congestion.
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Fig. 4. Number of residential consumers at the buses.

Fig. 5. Forecasted firm loads of all customers and the day-ahead market price.

Table 2
EV models [18].
EV models Battery capacity [kWh] Minimum battery energy level [kWh] Charging rate [kW] Discharging rate [kW] Charging efficiency Discharging efficiency

1 16.0 2.0 3.30 3.30 0.90 0.91
2 24.0 2.9 2.00 1.70 0.91 0.85
3 60.0 9.2 6.60 5.10 0.88 0.87
4 19.0 1.9 3.00 2.40 0.86 0.90
5 23.0 3.2 3.30 3.00 0.83 0.86
6 10.3 1.4 2.00 1.70 0.89 0.91
7 30.0 3.3 3.30 2.70 0.85 0.87
8 28.0 3.5 2.60 2.50 0.82 0.90

Fig. 6. EV fleet availability.

• Case 1: no pricing signals for congestion management;
• Case 2: DTs as the pricing signals;
• Case 3: DPTs as the pricing signals;
• Case 4: both DTs and DPTs as the pricing signals.

For cases 2 and 4, in which DT is incorporated in the decision-
making model of the REP, it is essential to firstly run the DSO’s
optimization problem with the forecasted nodal demand as input.
In this problem, it is essential to include the line loading limits. In
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Fig. 7. Forecasted outdoor temperature and the indoor expected temperature range.

Table 3
HP operation modes.
HP modes Maximum air mass flow [kg/h] Power per air mass flow [Wh/kg]

1 426 0.94
2 264 1.86
3 178 3.70

Table 4
DPTs published by the DSO.
Hours DPT (e/kWh)

2-5, 23–25 0.0056
7–18 0.0084
19–22 0.0091
26–33 0.0078

the case of overloading, the internal dispatchable DG units can be
used to serve the consumers. They produce electricity at higher
prices compared to the wholesale market. After determining the
DTs and publishing them, the REP schedules the consumption
based on these tariffs. In order to compute the overloading at
distribution lines, the DSO problem is solved without considering
the line loading limits. The DTs and DPTs are respectively shown
in Fig. 8 and Table 4. DTs are the congestion prices introduced
in Eq. (27). DT is a component of LMP at the distribution grid. It
is determined by the DSO using the set of Eqs. (20)–(27). The DPTs
are considered as inputs in this model. The DSO offers them in 4
different price steps to the REPs. The DSO’s historical data about
the grid congestions and the energy demand in the grid are the
main determinants for setting these tariffs.

The results of the case studies are shown in Table 5. All cases in
this section, which include the problem of REP and the DSO, are
solved by CPLEX [48] with GAMS 24.4.6 [49] on a 2.1 GHz Intel
Xeon processor executed on 16 GB RAM and 64-bit Windows 8.1
Pro system. The computational peakmemory for the REP’s problem
in case 4, which includes both price signals, is 164 MB and the
execution time for this problem is 340 s. The computational peak
memory for the DSO’s problem is 52 MB with the execution time
of 130 s.

Although applyingDTs have reduced the number of overloading
occurrences and the average of the overloading magnitude, the
DSO can still expect severe congestions at the periods in which
these tariffs are not considered. On the other hand, the case study
results reveal that considering DPTs (i.e., case 3) is very effective
in alleviating the congestion, without having considerable impact
on the REPs’ payoff compared to case 2, in which the DTs are used
to manage the congestion. In case 3, the REP uses more the energy

stored in the EVs’ batteries to serve the demand in order to reduce
the peak demand. It uses the V2H 7.11% more compared to case 2.
In case 4, which uses both DT and DPT pricing systems to manage
the congestion, no overloading occurs.

In order to better analyze the performance of the proposed
market-based approach, overloading at line L19 is demonstrated in
Fig. 9. Line L19 loading is due to the loads at buses 20, 21 and22. The
aggregated load profile of the firm demand for the 54 residential
customers located at buses 20, 21 and 22 is shown in Fig. 10. As
shown in Fig. 9, the line loading has decreased significantly during
the periods that the DTs are applied. In case 1 overloading at line
L19 occurs during hours 13–17, in case 2 it occurs at hours 11, 12,
18 and 22, and in case 3 the overloading happens during hours 12–
17. The congestion at line L19 has been fully alleviated in case 4.
When the DTs are consideredwithout DPTs, a significant overload-
ing can occur at other periods. For instance, the overloading at L19
has increased to 153.02% at hour 12, which is even higher than the
maximum overloading in the case that no tariffs are considered for
congestionmanagement (i.e., case 1). The DTs are defined for hours
13–17, and the line loading in case 2 during this interval reduces to
23.72% of the maximum line loading limit, which is far below the
130.37% of the maximum line loading in case 1.

In Fig. 11, the level of energy stored in the EVs batteries con-
nected to bus 20 is shown for the 4 cases. As expected when the
DTs and DPTs are not applied, the EVs are charged during the low
price periods. As seen in Fig. 9, themaximumoverloading occurs at
hour 15 (i.e., timeperiods 57–60). The batteries’ energy level shows
a significant increase in the energy level of the EV fleet during
this interval. In cases 2 and 4, during the periods before hour 13
(i.e., time period 49), the energy level of the batteries is increasing
significantly, which shows charging of the EVs. From time period
49,which is the first time periodwithDTs, the energy level remains
almost constant andbegins to reduce due to the discharging power.

The approach proposed in this paper is a step-wise approach.
The main concern in such models is the difficulty in obtaining a
socio-economically optimal solution [10]. This approach can be
used in electricity markets without imposing alteration to the
structure of the current day-ahead markets.

5. Conclusions and future work

A market-based mechanism for congestion management in ac-
tive distribution networks is proposed in this paper. Uncontrolled
operation of flexible loads, such as EVs and HPs can add demand
at peak hours and cause congestion in distribution networks. All
pricing systems proposed to alleviate congestion at the distribu-
tion network requires an effective load scheduling module which
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Fig. 8. DTs published by the DSO.

Table 5
Comparison of case study outputs.

Number of overloading
occurrences

Average overloading
magnitude (Mean ± SD)

Maximum overloading
magnitude

REP’s payoff [e] V2H energy transaction
[kWh]

HP energy consumption
[kWh]

Case 1 22 123.04% ± 13.39% 145.27% 3505.63 2445.10 201.58
Case 2 16 116.75% ± 13.46% 153.02% 3453.02 2368.80 201.70
Case 3 11 103.25% ± 1.20% 104.31% 3427.17 2537.30 202.80
Case 4 0 – - 3382.38 2425.50 201.45

Fig. 9. Loading percentage in line L19.

Fig. 10. Aggregated load profile of the firm demand at buses 20, 21 and 22.

provides centralized control for the loads. In this paper, the REP
manages the controllable loads of its clients through a centralized
coordinated HEMS. The proposed smart consumption scheduling
manages the load efficiently and avoids peak demand. It schedules
the loads based on day-ahead market prices, DTs and DPTs. DTs

and DPTs are the pricing signals published by the DSO to mitigate
possible congestions. The optimization problems of the DSO and
the REPs are both formulated and solved as MILP problems. The
case study results revealed that the DTs cannot individually avoid
the congestion occurrences, although they reduce the frequency
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Fig. 11. Aggregated batteries’ energy level at bus 20.

of this phenomenon. The simultaneous application of both DTs
and DPTs was effective in mitigating the risk of line overloading
occurrences.

In the proposedmarket-basedmechanism the DSO and the REP
have to make optimal decisions based on forecasted values. It is
very difficult to precisely forecast these inputs of the model, and
this process always involves a significant level of uncertainty. In
the proposed congestion management problem, the problem has
been considered as a deterministic model. Our future work will
examine the impact of price and demand forecast uncertainty on
the alleviation of congestion in the distribution network.
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