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H I G H L I G H T S

• Demonstrate importance of incorporating storage and ramping dynamics in clustering.

• Improve expansion planning model accuracy by 61% with adjusted cluster weights.

• Weights allow accurate modelling of total energy, peak demand, and ramp dynamics.

• Incorporate ramping challenges to clustering approaches improving results.

• Demonstrate under-representation of energy storage without ramping challenges.
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A B S T R A C T

Decision makers rely on models to make important regulatory, policy, and investment decisions. For power
systems, these models must capture (i) the future challenges introduced by the integration of large quantities of
variable renewable energy sources and (ii) the role that energy storage technologies should play. In this paper,
we explore several different approaches to selecting representative days for generation expansion planning
models, focusing on capturing these dynamics. Further, we propose a new methodology for adjusting the outputs
of clustering algorithms that provides three advantages: the targeted level of net demand is captured, the un-
derlying net demand shapes that define ramping challenges are accurately represented, and the relationship
between annual energy and peak demand is captured. This weighting methodology reduces the magnitude of the
error in the representative day based generation expansion planning models estimation of costs by 61% on
average. The results also demonstrate the importance of carefully performing the clustering of representative
days for both system costs and technology mix. In most cases improvements to the total cost of different re-
presentative day based expansion plans are realised where conventional generation capacity is substituted for
energy storage. Based on the energy storage technology selected we conclude this capacity is being used to
address ramping challenges as opposed to shifting renewable generation from off to on peak periods, reinforcing
the importance of capturing detailed intraday dynamics in the representative day selection process.

1. Introduction

Power systems are changing at an accelerated pace with the introduc-
tion of ever greater proportions of renewable energy, smart grid technolo-
gies, electric vehicles, and the wider availability of affordable energy storage
(ES). These changes, particularly to the types of technologies used in the
production of power, are forecast to introduce a number of new challenges
particularly around the area of flexibility [1]. Decision makers, such as
energy companies, power system operators, and government policy makers,

are then faced with an important problem: how to make decisions about the
direction the power system should evolve to meet these challenges without
having perfect knowledge of the scope of the challenge or the costs and
benefits of potential future technologies.

To make these decisions we turn to the use of models, simplified re-
presentations of the system, to forecast and assess different future invest-
ment options. However, the future challenges are predicted to be different
and more complicated than those seen historically [2]. For example, the
problem of integrating variable renewable energy, and the demand for
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flexibility it places on the system, increases with the proportion of renew-
able energy in the system and will therefore be significantly higher in the
future [1]. This flexibility requirement has important implications for the
optimal build and operation of all units [3], affecting costs, emissions [4],
and sustainability [5]. The inclusion of the dynamics resulting from re-
newable integration, and the role that ES [6] and demand side response can
play in addressing them, are classified as important current challenges for
the long term modelling of power systems and the generation expansion
planning (GEP) problem [7].

The study of generation expansion with high levels of renewable
energy is a particularly active area of study (see [2,6,8] for recent re-
views). In [6] the authors find optimisation models to be both the most
common approach and the most suited to capturing the level of tech-
nical detail required to represent flexibility challenges. However, when
applying a model, particularly an optimisation model, we are limited in
our ability to add detail, such as future flexibility requirements, before
the model becomes unwieldy. An important modelling task is then to
select which areas of the real system we can simplify or abstract out. As
the future system challenges require further detail in some areas of the
model, reducing the scope in other areas may be required. A common
area to reduce detail is the representation of time (the level of temporal
granularity) included in the model to allow for the more complex in-
corporation of other factors such as operational details.

A trade-off then exists between model detail or model complexity
and the level of temporal granularity included. This trade-off is an ac-
tive area of research. In [9], the authors explored the trade-off between
spatial and temporal granularity in a planning model for electricity
expansion in California. The authors found the largest change in cost
was associated with changes in spatial detail, which suggested a pre-
ference for spatial detail over temporal detail in model formulation. On
the other hand, [10] examines the trade-off between the level of tem-
poral detail and the level of operational detail in energy system plan-
ning models and finds that temporal detail and the method of selecting
the temporal resolution to be important for results in the high renew-
able penetration systems of the future. Further, an increasingly im-
portant trend is the use of stochastic optimisation to attempt to deal
with uncertainty in planning model inputs. To facilitate this, [11] ex-
plores the trade-off between the level of stochastic and temporal
variability and concludes that temporal detail should be sacrificed to
improve the level of stochastic representation.

The amount of temporal detail we can include in any model is then
severely limited by our need to include detail in other areas. The
challenge is to ensure that sufficient temporal detail is included so that
the model is still representative. In a GEP model this is complicated by
the fact that many of the important challenges of the future, such as
flexibility provision (see [3;12]), demand shifting and storage operation

[9] are dependent on the representation of time. For example, a de-
tailed representation of flexibility in the model operational detail (such
as integer unit commitment combined with ramping and start-up con-
straints) is important for results [4] yet, it cannot be expected to pro-
duce accurate results without the inclusion of the temporal detail that
generates the flexibility challenges, as demonstrated by [13].

The task of selecting the level of temporal detail is an important one and
is increasingly attracting academic attention. A common initial approach
was to use a number of representative individual periods (see, for example,
[12,14,15]), often calculated from a load duration curve, which minimises
the computational effort [15]. This approach is particularly common in
energy system models [16] (although work has been done to extend this
approach in this context [17]). The problem with this approach is that the
importance of the transition between time periods is lost; on the short-term
ramping scale, the daily storage operation scale, and on the longer scales of
weekdays vs. weekend or summer vs. winter.

To preserve these relationships, a number of studies then instead
select larger blocks of representative time periods; for example, either
representative days (as in [3,17,18,19,20]), or representative weeks (as
in [21,22]). To incorporate seasonality, representations can be selected
from periods of less than a year (monthly or seasonally) as in [20], for
example, or alternative approaches, such as [23], which retain seasonal
chronology, can be considered.

An increasingly popular means to select which periods should be
included as representative is that of clustering, where observed his-
torical data is grouped and a representative period (hour, day, or week)
is selected to represent each group. A number of different algorithms
are used, including k-means, k-medoids, principle component analysis,
and hierarchal clustering (see [24], for an overview, and [25,26], for
comparisons in the application to this task).

This paper extends previous work on the selection of representative
days for power system expansion models where renewable build is
treated exogenously (as is often the case with renewable integration
studies). The work seeks to ensure that the future challenges of pro-
viding the flexibility requirement for the incorporation of variable re-
newable energy sources and the role of ES is accurately represented for
the purpose of long-term planning. Towards this end, the main con-
tributions of this work are that we:

• Develop a new methodology for adjusting the weights calculated by
clustering algorithms for representative days before using them in
the GEP model. The new approach achieves three important goals: it
ensures forecast annual energy requirements are modelled, the re-
lationship between annual energy and the peak value is preserved,
and the inter-period ramping dynamics that drive flexibility re-
quirements are accurately captured. This generic approach can be

Acronyms

General

CCGT combined cycle gas turbines
ES energy storage
GEP generation expansion planning
ND net demand
NRMSD normalised root mean square deviation
OCGT open cycle gas turbines
PAM partitioning around medoids
RDDC representative day duration curve
UC unit commitment

Results

DC duration curve

DWS demand, wind, solar series
GMMD greatest min-max difference
GMMD6 greatest min–max difference over 6 h
MCRD maximum consecutive positive change down
MCRU maximum consecutive positive change up
MinV minimum value
MRD maximum single period negative change (peak ramp

down)
MRU maximum single period positive change (peak ramp up)
NDHF historical and future net demand
RDC ramp duration curve
S data series (ordered)
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easily applied to any existing clustering methodology and is shown
here to result in a significant improvement to the GEP model’s
ability to estimate costs.

• Explore different approaches to representing historically observed
data (i.e. separate time series for load and renewables or a combined
time series for net load, the means for determining net demand, and
the use of duration curves or ordered series) in the clustering al-
gorithm and find large differences in the quality of GEP modelling
results based on this choice.

• Test the inclusion of a number of potential ‘extreme points’ or ‘days
of interest’ to improve the representation of future flexibility re-
quirements and determine the benefits for accurately modelling the
role of ES.

• Compare and assess the technology mix in generation expansion
plan results based on the emphasis of different features of the data to
explore the implications for future technology selection based on the
accurate inclusion of future power system requirements (and the
potential biases where these are ignored).

In the remainder of this article we outline the clustering metho-
dology used for representative days selection (Section 2.1), the different
means of including input data and extreme points (Section 2.2), our
proposed weighting methodology (Section 2.3), and the test GEP model
and dataset (Section 2.4). We then follow with results (Section 3) and
draw conclusions for the best approach to selecting representative days
for GEP (Section 4).

2. Methodology

2.1. Clustering methodology

We make use of clustering techniques, as it is increasingly common
for the task of selecting representative input data for GEP. A number of
possible clustering algorithms that could be applied to our data exist, as
reviewed by [24], with ‘k means’ being perhaps the most common. An
important consideration in the selection of algorithm is which output
will be used in the GEP model. One possibility would be to use an
average of all data in the cluster (a k-means approach is based on
minimising the distance to this average). However, an average day load
or wind profile will necessarily reduce the hour-to-hour volatility by
smoothing [27]. Instead, we use an observed day in the GEP model and
so use a k-medoids approach where we select an actual observed day
that minimises the distance of the selected day to the other members of
its cluster. The specific algorithm is based upon Partitioning Around
Medoids [28]. This approach is validated by the finding that k-medoids

clustering can reduce error in long-term planning studies [25,29].
Typically, of more importance than the clustering algorithm itself, is

the treatment and representation of the data to be clustered [26]. We
test a number of different approaches to represent the data in the
clustering; more specifically, we broadly test across two dimensions:

• Representation of data - The data series chosen to represent a day
in the clustering algorithm (for example net demand vs. separate
wind, solar and demand series).

• Extreme points - The potential inclusion in the clustering output of
extreme points or ‘days of interest’ assumed to be important to the
accuracy of the generation expansion planning model.

Allowing for the manipulation of these dimensions has implications
on the implementation of the clustering algorithm as described in
Section 2.1.1. The data selection, clustering, and weighting process is
summarised in Fig. 1.

2.1.1. Algorithm
The clustering algorithm developed for this analysis is based on the

Partitioning Around Medoids (PAM) algorithm [28]. For k re-
presentative clusters with the inclusion of p preselected medoids, the
algorithm can be written in seven steps, as follows:

1. Normalise data - The data is a collection of days each with one or
more time series of observations (e.g. 48 half hourly net demand
observations). Each observation in each series is normalised with
the series mean and standard deviation.

2. Force medoids - Determine p preselected days and set these as
medoids for the first p clusters.

3. Initialise remaining medoids - Randomly select the remaining k –
p medoids from the dataset as initial medoids for the remaining
clusters.

4. Determine clusters - For each day determine the distance (using
the below described distance metric, see Section 2.1.1.1) to each of
the k medoids and find the closest medoid. Groups of days with the
same closest medoid are considered ‘clusters’.

5. Update medoids - For each of the k - p clusters without a pre-se-
lected medoid calculate the distance between each day and all other
days (see Section 2.1.1.1) – select the day with the minimum total
distance to all other days in the same cluster as the new medoid for
that cluster.

6. Converge - Repeat steps 4–5 until the there is no change in the
closest medoids for each day (or a maximum number of convergence
iterations reached).

Fig. 1. Diagram of data selection and clustering process for selection and weighting of representative days for GEP model.
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7. Report - For each cluster of days, report the selected medoid and the
cluster size (to be used as a weight in GEP) as well as the total
distance of all days in the cluster to their cluster medoid.

The quality of the solution found may depend on the random se-
lection of initial medoids. The algorithm is typically repeated for sev-
eral different randomly selected starts, and the result with the lowest
total distance metric is kept. In this case, we repeat the algorithm
10,000 times.

2.1.1.1. Distance metric. The unit of selection here is a day, which we
test with different levels of data, for example either a net demand series
with 48 observations or two separate wind and demand series with 48
observations each. The distance metric used is an average squared
Euclidean distance, which helps ensure consistency across different
numbers of series and different series sizes (for example two data series
per day vs. one):

= =
=
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n

( , ) s
n d d
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nt s t s t
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where d and d’ are two selected days, each day is represented by ns data
series. With each data series containing nt observations (here 48 half
hour periods). ds t, is then the values of series s at time t on day d.

2.2. Representation of input data

2.2.1. Selection of series for clustering algorithm
Starting with historically observed data for a power system, there

are a number of different ways we could consider using this information
for the clustering algorithm.

Individual series: historical demand, wind capacity factor, and
solar capacity factor - The data that determines net demand for each
day can be represented as individual series (one series each for load,
wind, and solar), as in [12]. Here demand is in MW per period, wind

Fig. 2. (a): Determination of historical net demand day 1; (b) Determination of historical net demand day 2; (c) Comparison of net demand with different levels of
future renewable uptake.
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and solar in average fleet capacity factor for the period.
Net demand series – the data for wind, solar, and demand can be

combined to determine net load series, as is in [22]. The derivation of
the net load curve would be different for different levels of future wind
and solar capacity (see Section 2.2.2, for discussion). The advantage of
this approach is that it considers the relative importance of the un-
derlying series (demand, wind, solar, etc.).

Net demand duration curve - An alternative common re-
presentation for a net demand series is that of a duration curve. Here
the net demand is ordered from highest to lowest value for each day.
The advantage of this approach for clustering is the highest demand
period (and second highest, and third highest, etc.) for each day is
compared to the highest of every other day, which would not happen
with the chronological series, if they happen to fall in different periods.
The disadvantage of the duration curve is that it does not represent the
chronological nature of the time series. That is, it loses all information
about the size of the transition between periods, which can drive flex-
ibility requirements.

Net demand ramp duration curve – [26] introduces the concept of
a ramp duration curve. First the ramp rates are calculated (by differ-
encing the net demand series) and then ordered to form a duration
curve. This allows an additional series for the algorithm to cluster on
what represents the ramping requirements of each day.

We test these representations in different combinations to attempt
to find a representation of the input series that allows the algorithm to
cluster against the dynamics that are important for the GEP model.

2.2.2. Historical and future net demand
Clustering is often performed on historical observed net demand.

The issue with this is demonstrated in Fig. 2, where two days are
compared: day 30 in winter (a) and day 139 in spring (b). In chart (c)
with historical levels of renewable capacity the two net demand levels
are reasonably close (solid lines). However, at future levels of renew-
able uptake the net demand of the two days is drastically different
(dotted lines).

This presents a potential problem when clustering days based on
historical net demand as the clustering algorithm will see little differ-
ence between the two days (and cluster them together) when, in fact,
for the purpose of the GEP model, they are very different.

For this reason, we expect that clustering based on a series derived
from historical renewable deployment may not produce a net demand
series which is representative for the whole period of the expansion
planning problem. We therefore compare two representations of net
demand:

• One where each day has a historical net demand series (ND).
• One where each day has two net demand series; one based upon

historical renewable deployment and another based upon the future
deployment of the modelled year (NDHF).

It is important to emphasise that knowledge of future net demand is

required to include this series in the clustering, which is only the case
where we have an idea of future renewable deployment. However, this
is often the case as renewable build is still driven largely by government
policy and usually determined outside of a strict cost minimisation
model. Renewable integration (or investment given renewable build) is
an active area of research to which this methodology is targeted [2].

2.2.3. Inclusion of ‘days of interest’ (forced inclusion of selected medoids)
For the purpose of modelling power systems, clustering can under-

represent extreme points which are important for driving GEP results
[14,30]. Forcing the inclusion of specific observations based on the
modellers prior knowledge of the problem improves the quality of re-
sults for generation expansion planning. An obvious example is the
inclusion of the ‘Peak’ period of the year as this will be a considerable
driver of the expansion of capacity and is unlikely to be central to a
cluster (as it is an extreme point) and, therefore, unlikely to be other-
wise selected. The peak day is, therefore, often “manually” added to the
selection as an additional data point or set as a cluster centroid [30,27].
Without this forced inclusion, the clustering will take a central point of
the cluster that the day with the peak period is within to represent that
period and the generation expansion planning model will not contain
the exact peak demand required to be met in the future (based on
historical peak demand).

As clustering tends to under-represent extreme points by selecting
central points or averages [14,25,31], and as these can be important in
driving expansion results [14,30], we examine the inclusion of a
number of ‘days of interest’. These ‘days of interest’ contain specific
observations that may help to ensure the selected representative days
capture the future power system challenges relating to flexibility and ES
operation, which we are interested in. The extreme points tested here
are described in Table 1.

The additional medoids are chosen based on similar reasoning to
that of the peak day – that results can be driven by extreme values. We
test two representations of future ramping requirements to ensure that
the system builds the flexibility to deal with the greatest flexibility
challenge. We test both the greatest ramp (up and down) between two
individual periods and the greatest consecutive ramp (up and down).

To test properties that may be important to the deployment of ES
devices that operate on a daily cycle, we test two ‘days of interest’. The
extreme min-max differences are tested to attempt to capture the
greatest value a storage can achieve in a single hour and the greatest
min max distance over six hours as an estimate of the value that can be
achieved by using the full storage capacity.

Finally, minimum values are included as they are likely to be im-
portant for representing future renewable curtailment challenges (ei-
ther through curtailing renewables or forcing conventional generation
off and incurring future start-up costs).

Where the input data includes multiple series (e.g. net demand data
for current and future renewable penetration), the selected observation
(e.g. day with peak period) for each of series is included.

Table 1
Description of days of interest.

Days of interest (day with:) Description

Maximum value (peak period) – Always included Day with the series highest recorded value
GMMD Greatest min-max difference Day with the greatest difference between the highest and lowest value
GMMD6 Greatest min-max difference over 6 h Day with the greatest difference between the 6 h with the highest values and the 6 h with the lowest

values
MCRU Maximum consecutive positive change up Day with the highest positive increase over consecutive periods (largest consecutive ramp up)
MCRD Maximum consecutive positive change down Day with the highest negative change over consecutive periods (largest consecutive ramp down)
MRU Maximum single period change positive (peak period ramp up) Day with the highest positive difference between two periods
MRD Maximum single period change negative (peak period ramp

down)
Day with the highest negative difference between two periods

MinV Minimum value Day with the series with the lowest recorded value
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2.3. Weighting of representative days for expansion planning model

The output of the clustering algorithm consists of several selected
typical days (cluster medoids) and their corresponding cluster sizes
(that quantify the number of actual days that are being represented by
each selected medoid day). However, the summed product of these is
not guaranteed to equal the total energy (or renewable production) of
the observed data, which is an important factor in the GEP model.

Careful treatment of this problem is particularly important when
comparing different representative day selections. For example, if two
representative day selections have different levels of net demand to
meet, this will influence the expansion results.

It is important to note that small percentage errors can be significant
here as the error is applied to total annual net demand. As such a 1–2%
error in our case study results in a significant difference in the energy
needed to be procured from additional units and will result in a switch
between peaking (or ES) and CCGT technologies. In the literature, es-
timates of the size of this error vary, particularly depending on the
number of representative days, however, it is often significant. For
example, in [26] the authors find errors of approximately 2–6%, when
using a clustering methodology, even with 8 or more selected days.
Additionally, [32] reports values in the 1.8–5% range again even when
8 or more days depending on methodology used.

Additionally, we can expect the effect on the estimation of costs to
be greater than the underlying error in net demand. For example, if we
introduced a 5% error in total net demand by simply increasing all
weights by 5%, then we would expect roughly a 5% increase in oper-
ating costs. However, when the clustering outputs result in a 5% higher
total net demand, this means the high net demand days (high cost) have
higher weights and the low net demand days (low cost) have lower
weights, resulting in a disproportionate change in the estimation of
costs.

In some approaches, the underlying data is scaled1 so that this error
is removed (as seen, for example in [16,27,32,33]). In practice, the
scaling to observed values is often done in a way so as to preserve the
value of the peak period [16]. This means that some periods are scaled
more than others (the peak period is not scaled, and no other period is
scaled to be above the peak period). The scaling is then different for
different periods and this will alter the change between periods (the
required ramp rate) - a key potential metric for driving system costs.
Ramp rate requirements around the peak period, a potentially ex-
tremely challenging period for the model as most capacity is already
committed at high load, will potentially be altered the most. An illus-
trative example is included in Fig. 3, where a single representative day
is selected, one with a net demand 10% lower than the average over the
full dataset.

Here we propose an alternative methodology that allows us to
preserve underlying data series and instead adjusts the weights applied
to each day in the GEP. The methodology is as follows:

• Select representative days and determine cluster weightings for
these days (as outlined in Section 2.1).

• For each year that is being modelled, determine the net demand
associated with each day. The net demand will depend on future
demand, renewable modelled capacity2, expected change in re-
newable annual capacity factor (if different to historical), and the
day’s renewable capacity factor.

• Find a set of weights to be used in the GEP (a weight for each cluster

medoid, for each year) as close as possible to the cluster weights that
ensures total net demand in the GEP.

To determine the new weights, we solve a simple quadratic opti-
misation problem that calculates a scalar3 for each cluster size that
minimises the scalar squared distance from 1 (Eq. (2)) to achieve a final
weight as close to the original cluster size as possible. The optimisation
is constrained to ensure that the total net demand is achieved (Eq. (3))
and the sum of the weights remains unchanged (Eq. (4)). Additionally,
the formulation requires that no weight can be scaled below 1 or above
the total number of days (Eq. (5)).

The optimisation problem needs to be solved for each year in the
GEP model (unless no changes in relative shares of wind, demand, or
solar are expected as the level of Net Demand associated with a re-
presentative day will change with these shares). The mathematical
formulation of the problem is given below.

smin (1 )
s d D

d
2

(2)

=w ND s NDs.t. · ·
d D

d d d
Total

(3)

=s w D·
d D d d

Count
(4)

w s D d D1 ·d d
Count (5)

where sd is the scalar to be applied to the weight wd of each re-
presentative day d D when used in the GEP model; NDd is the total
net demand of day d and NDTotal is the total net demand of the un-
derlying dataset over all DCount days.

While this formulation is not guaranteed to be feasible4 in general, it
was found to be so for all cases analysed here.

Here we focus on the case where the future net load forecast is an
input to the model. This is often the case when renewable build is de-
termined by factors exogenous to the model (e.g. government policy)
and electricity demand is forecast exogenously. It is possible to for-
mulate this problem so that not just net demand is achieved, but also
capacity factors for wind and solar. However, this is a significantly
more restricted problem which results in unreasonably large scalars
being calculated (where the problem is feasible) in this case study, with
the average absolute change to weights being greater than 50%.

This formulation, additionally, allows us to either treat renewable
production as exogenous and simply use net demand in the GEP model,

Fig. 3. Illustration of scaling of net demand series, maintaining peak value to
increase average net demand by 10%, as in [16].

1 For example, if we had selected one representative day, we would scale the
net demand values for each hour so the total net demand for the day multiplied
by the number of days in the year would equal the full dataset annual total.

2 Here we focus on the case where renewable capacities are known in advance
(potentially as uptake is driven by policy targets as opposed to market dy-
namics).

3 A formulation based on adding or subtracting to the weights was also
considered. However, this approach tends to adjust the days with smaller
weights to a relatively higher degree, which also tend to be the more extreme
days, and results in more extreme final weighted representative days.

4 For example, if all selected days had higher/lower average net demand than
the average over the year.
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or alternatively, have endogenous representations of renewable capa-
cities and use the capacity factors associated with the representative
days in the model.

2.4. Evaluation model

The aim of the representative day selection task is to determine the
approach best suited to selecting inputs to a GEP model. To compare the
different time period selections, we first simulate the selected re-
presented days and weights in a generation expansion planning model
to determine the set of expansion decisions and the estimated system
costs.

To determine how well the selected days represent the full data set,
the expansion plans are then tested in a daily unit commitment (UC)
model. The daily UC model allows us to calculate how the expansion
plan performs over the entire dataset, i.e. the full time period of the
original data, which cannot be solved practically as a single GEP opti-
misation problem. The process is summarised in Fig. 4.

2.4.1. Generation expansion planning (GEP) model
The capacity expansion model optimises the investment decisions in

new generation technologies accounting for the operational decisions of
both new and existing units for the set of representative days. For
simplicity, a single future year is included for the GEP model to make
build decisions with a discount factor used to reflect the discounted
difference between the one off build costs and other annual or variable
costs (annual costs for the one modelled year are weighted to represent
a discounted 15 years of operation). The objective function follows the
following form:

+

+ + +

+ + +
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where for each unit p P and model time period t T the model

optimises the build of unit bp and the operation ot p, and generation gt p,
at each point in time. The following costs are accounted for each unit p:
build cost Costp

Build, annual fixed costs Costp
Fixed, start costs Costt p

Start
, , op-

erating cost Cost ,t p
Oper
, generation cost Costt p

Generation
, , and curtailment cost

Costt p
Curt
, for renewable generators. The model can take penalty actions

to incur unserved energy pt
UE , dump energy pt

Dump, spin up violations
pt

SDViol, and spin down violations pt
SDViol all with associated costs. The

factor DF Years15 is applied to annual costs equivalent to 15 years of op-
eration discounted to correctly weight the benefits of building a new
unit. Finally, the weightWeightt is applied to each time period. This is
the weight calculated in the weighting methodology and it will be the
same for all time periods falling on the same representative day.

The full formulation is included in the supplementary material for
brevity. However, it is broadly similar to those found in [34,35] and
features:

• Integer build decisions to reflect the reality that it is not possible to
build partial units due to technical and economic constraints.

• The use of binary (for existing units) or integer (for new units) op-
erating variables to capture starts and stops. The use of binary and
integers in operational constraints is important in valuing flexibility,
as discussed in [36].

• Period (half hourly) ramping constraints that ensure that sufficient
flexible capacity is committed to meet challenges created by vari-
able renewable technologies.

• The provision of a spinning reserve service; they pose a future challenge
to the system, which is important for the integration of renewable en-
ergy [37], and one that ES can help resolve. Note that we assume that
renewable generators cannot provide spinning reserves.

• The formulation of the operation of storage which features: ‘full
cycle efficiency’, provision of reserves, ramping constraints, a con-
straint to ensure charge and generation are not used simultaneously
as this is an unlikely market operation (to dump extra energy where
needed). Additionally, the storage is formulated so that the stored
energy at the end of the day is the same as that at the start of the
day, to prevent transfer of energy between representative days
(however, this quantity is freely chosen up to the storage limit).

• Penalties and costs for unserved or dump energy, violations of up
and down spinning reserves, and costs to renewable generation
curtailment.

Fig. 4. Diagram of GEP modelling and result evaluation process.
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2.4.2. Unit commitment (UC) model
To assess the build decisions on the full dataset, we restrict the

model to a set of sequential single day problems that focus on the unit
commitment decisions. To do so, we fix the build decisions to the op-
timal values from the GEP model and remove the investment and fixed
costs (so they are not incurred every day).

The model is run sequentially for the full dataset (a full year) op-
timising one full 48 period day at a time with a 48 period look-ahead, as
in [38]. That is, the model optimises decisions over a full 96 periods
representing two days (to ensure naïve start or shutdown decisions are
not made at the end of the first day, as the model must ensure units are
online for a second day or incur start costs) but only the results of the
first day are recorded. The model then simulates the following day with
the initial commitment decisions and initial generation levels set from
the end of the previous day (period 47).

2.4.3. Simulation system
All simulations are performed on a laptop with an Intel Core i7-6500U

CPU @ 2.50 GHz and 8 GB of RAM. Models are implemented in C# and
optimisations problems solved with the Gurobi solver. Optimality gap target
of 0.1% is reached with an average time of 2013 s.

2.5. Case study

The United Kingdom (UK) has committed to decarbonisation and the
electricity system is expected to feature large quantities of renewable energy
in the near future. We make use of this system as a case study and examine
two cases with differing levels of renewable penetration:

Medium term system (2020) - medium renewable penetration –
the UK market as it currently exists with expected conventional re-
tirements and expected increases in renewable capacities [39].

Future system (2025) – high renewable penetration – In this
future scenario, there is a significant growth in wind and solar gen-
eration capacity and a decrease in conventional dispatchable capacity.
From the capacity mix forecast for 2025 in [39], we add 2% growth to
demand and allow the model to select the capacity to meet this gap. See
Fig. 5, for capacity mixes.

For robustness, we perform the clustering exercise and all analysis
on two separate historical datasets (one for 2015 and another for 2016)
based on half-hourly demand, solar, and wind profiles5.

2.5.1. Generation expansion planning
We examine the ability of a number of technologies to meet future

system challenges. In particular, we compare two different theoretical bat-
tery storage technologies, one with 2 h and another with 5 h of storage
capacity. While these technologies may not be representative of the current
economical storage sizing, they allow us to distinguish the reason storage is
being built. If the model is using storage to shift large quantities of load
(overnight wind to peak or solar to mid evening) the larger storage capacity
would be required. However, if storage is being used to meet ramping
challenges it may not be the case that such a large storage is required, and a
smaller cheaper storage may be selected by the model.

We compare these two storage technologies to the conventional
technologies CCGT and to a Peaker (OCGT).

We include a supply curve for each technology by increasing the
capital costs of each technology as more of that technology is built6. For

our purposes, this assumption improves the robustness of our compar-
ison as a small change cannot result in the optimal technology mix
switching completely from one technology to another and we can be
more confident of large technology changes when we observe them.

For more information on unit characteristics, see supplementary
material.

3. Results

In this section, we look at the effect of changing the representation
of the input series to the clustering (Section 3.1), before the inclusion of
extreme points (Section 3.2), and assessing the scaling methodology
(Section 3.3). For all results we examine the ability of the clustering to
represent the underlying demand and, additionally, the ability to per-
form in a GEP model. For more details on the assumptions underlying
this analysis, please see the supplementary material.

3.1. Representation of data input series

All cases report results for 9 selected days with the day including the
peak value for each series forced as a centroid for inclusion and are
described in Table 2.

3.1.1. Clustering results
Fig. 6 displays the load duration curves constructed from the dif-

ferent representative day selections and compared to the full data set
(for the 2016 input data case). The peak value is the same across all
selections based upon net demand, as the day including this value is
enforced as the maximum of that series. For the selection based upon
individual demand, wind, and solar inputs (DWS), this is no longer the
case as while the peak demand day is captured, the peak net demand is
not (as the peak net demand day would have lower renewable pro-
duction). We resolve this difference with the DWS_NDP case which
combines the clustering of DWS with the peak net demand days. As the
weightings placed on this peak day are similar across all the selections,
and no other days with high net demand values are selected, the high
load portions of the load duration curves are similar across all selec-
tions. The ability of the selections to capture the low load portion of the
net demand series differs more significantly. This effect becomes more
pronounced as we look to model the net demand for the 2025 year, with
higher levels of renewable penetration, as illustrated in Fig. 6(b). In
Fig. 6(c) inclusion of future net demand in the clustering improves the
2025 net demand curve representation at the top and bottom of the
load duration curve (highest 10% and lowest 10% of hours) compared
to Fig. 6(b), however, the very lowest net demand hours where net
demand is negative are still not well represented by any of the ap-
proaches. This result demonstrates how extreme points (such as ex-
treme levels of low demand) are often not well captured by clustering

Fig. 5. Installed generation capacity adapted from slow progression scenario
[39].

5 While we would not recommend selecting on a single year of data to find a
representative set of profiles for future expansion planning, this approach is
sufficient for testing the ability of a clustering algorithm to represent an un-
derlying dataset [26].

6 This assumption can be thought to reflect either a preference for diversifi-
cation or that as the optimal siting for new technologies is exploited, less op-
timal siting must be used and installation costs increase (or renewable pro-
duction decreases). An alternative approach would to be allow for technology
learning to create a supply curve, as in [40].
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methodologies and must be treated separately where they are con-
sidered important for the modelling (as we explore in Section 3.2).

Table 3 reports the clustering algorithm average squared Euclidean
distance and a number of metrics relating to the fit of the selected re-
presentative days to the full data series as commonly used to asses se-
lections [18,25]. To assess the difference between the full dataset
duration curve and the selected day duration curve, we calculate the
normalised root mean square deviation (NRMSD) from [18] for each
point i on the representative day duration curve RDDC and the full
dataset duration curve DC.

= =

=

NRMSD
RDDC DC

DC

( )i i i

i i

1
8760 1

8760 2

1
8760 1

8760

The results for the average squared Euclidean distance, that the
clustering algorithm attempts to minimise, demonstrate that the or-
dered duration curve data-based approaches (ND_DC, ND_DC_RDC) are
significantly easier to cluster than the unordered net demand or in-
dividual series data. However, when we look at how well the selections
fit the load duration curve as a whole (as measured by NRMSD) we find
the values increase the further into the future we look. Again, this in-
dicates that the representative days fit to the underlying data decreases
for future years (as wind and solar capacity increase in the underlying
net demand). The individual series clustering (DWS) is the least sus-
ceptible to this issue as it inherently places a high value on capturing
wind and solar dynamics. This works well for our case study where
wind and solar are important drivers of net demand, however, this may
not be the case for all applications. The addition of the ramp duration
curve to the net load duration curve does improve the represented days
ability to fit the ramp duration curve both in the historical and future
data as measured by the NRMSD. With the addition of future net de-
mand to clustering series (NDHF), the Euclidean distance the clustering
algorithm is attempting to minimise increases significantly as each day
contains more data to compare between. However, the representation
of the future duration curve improves significantly demonstrating that
the Euclidean distance minimised by the clustering may not represent
all information relevant for the clustering depending on the re-
presentation of the data that is used in the clustering.

3.1.2. Expansion planning model results
In this section we compare how the capacity expansion planning

model performs using the different sets of representative days. Fig. 7
displays the error in the estimate of total cost (as compared to a unit
commitment model simulating the full dataset) for each of the expan-
sion plans selected by the GEP model. For the most part, when using the
net demand series to select representative days, the GEP model can be
shown to overestimate the costs, with the exception of the 2025 model
year with the 2016 load shapes. The individual series selection (DWS)
greatly underestimates costs across all scenarios, potentially reflecting
its lower coverage of the higher portion of the net demand load dura-
tion curve. To resolve this issue, we include the net demand peak day

Table 2
Key for case abbreviations.

Abbreviation Case description

ND_S Historical net demand as original chronological series used in clustering
ND_DC Historical net demand as duration curve used in clustering
ND_DC_RDC Historical net demand as duration curve and historical net demand ramp duration curve used in clustering
ND_S_DC_RDC Historical net demand as original series, as duration curve, and as ramp duration curve all included in clustering
DWS Individual historical demand, wind capacity factor, and solar capacity factor included in clustering
DWS_NDP Individual historical demand, wind capacity factor, and solar capacity factor included in clustering. We relax the inclusion of the peak wind day, peak demand

day, and peak solar day and instead include the peak net demand day as a forced medoid
NDHF_S Historical and future year net demand as original chronological series used in clustering (two data series total, per day)
NDHF_DC Historical and future year net demand as duration curve used in clustering (two data series total, per day)
NDHF_DC_RDC Historical and future year net demand as duration curve and historical net demand ramp duration curve used in clustering (four data series total, per day)
NDHF_S_DC_RDC Historical and future year net demand as original series, as duration curve, and as ramp duration curve all included in clustering (six data series total, per day)

Fig. 6. Load duration curves for full year data and different representative day
selections that differ in the representation of data used in clustering; (a) 2016
Net Demand; (b) 2025 Net Demand; (c) 2025 Net Demand including 2025 Net
Demand in clustering.
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before clustering based upon individual series (DWS_NDP). This result
demonstrates a potential difficulty of selecting representative days for a
GEP model with endogenous renewable build. It is critical to include
the peak net demand day in the inputs to the GEP model, however, this
is a product of the renewable build decisions determined by the model
and is not known in advance.

When using solely historical data, the addition of the ramp duration
curve improves the results (ND_DC_RDC and ND_S_DC_RDC). However,
a greater improvement is found by the addition of a future net demand
series for both the ordered and the duration curve selections (NDHF_S
and NDHF_DC). The magnitude of the error in cost estimation is re-
duced by 14% (from 2.2% to 1.9%) and 32% (from 2.9% to 2.0%) on
average for the ordered series (_S) and duration curve approaches re-
spectively (_DC). The addition of a future net demand series increases
the GEP estimation errors where the ramp duration curve is included in
the clustering (NDHF_DC_RDC and NDHF_S_DC_RDC).

In addition to the errors in cost estimation, we are interested in how
close the solution found is to the optimal one for the entire represented
year. While we are unable to solve the expansion problem for the full
year, we can compare solutions found to the best solution found as
assessed by the unit commitment model for that case (as an approx-
imation of the optimal solution)7. Fig. 8 presents the costs above the

best solution found (across all combinations tested here) for the dif-
ferent input datasets and GEP model years for each representative day
selection method. It should be noted that these costs are small relative
to the objective function of the model. This reflects the fact we are
making small incremental changes to a large existing power system, as
is typical of modelling in most applications. However, the value of poor
selections of future technologies would still represent a large cost to
society.

In Fig. 8, we see that most representative days perform relatively
poorly in the 2020 model year when the 2015 input dataset is used8.
Using the underlying data series with the peak net demand day
(DWS_NDP) performs the best on average followed by the approaches
that include the original net demand series (NDHF_S, ND_S_DC_RDS,
and ND_S). Compared to a simple clustering on historical net demand
duration curves, the DWS_NDP approach improves the accuracy of the
estimation of costs by 71% (from 2.9% to 0.8%) and reduces the dif-
ference in cost to the optimum expansion plan by 57%. The importance
of the unordered original series (ND_S) may reflect a number of factors:
firstly, the even relative weighting between the duration curve and
ramp duration curve may not reflect the relative importance of these
features to the GEP model. Alternatively, the time of day at which
ramping occurs (and its correlation with net demand) may be important

Table 3
Clustering metrics - Euclidean distance and normalised root mean square deviation (NRMSD).

Average Squared Euclidean
Distance

Normalised root mean square deviation (NRMSD) of duration curves – average of 2015 and 2016

2015 2016 Historical Net
Demand

2020 Net
Demand

2025 Net
Demand

Demand Wind Solar Historical
Ramp

2020
Ramp

2025
Ramp

ND_S 29.78 26.28 0.05 0.12 0.28 0.18 0.70 0.17 0.08 0.10 0.15
ND_DC 15.30 15.31 0.05 0.11 0.24 0.16 0.46 0.16 0.07 0.09 0.14
ND_DC_RDC 17.87 18.25 0.06 0.11 0.21 0.14 0.53 0.26 0.06 0.07 0.13
ND_S_DC_RDC 23.10 21.95 0.06 0.12 0.26 0.18 0.65 0.14 0.07 0.08 0.13
NDHF_S 46.70 39.48 0.07 0.09 0.10 0.10 0.35 0.16 0.09 0.12 0.14
NDHF_DC 25.08 23.54 0.06 0.07 0.07 0.11 0.32 0.25 0.07 0.08 0.13
NDHF_DC_RDC 26.62 24.51 0.06 0.08 0.09 0.09 0.25 0.17 0.06 0.07 0.09
NDHF_S_DC_RDC 35.71 31.22 0.06 0.08 0.09 0.07 0.31 0.15 0.06 0.07 0.10
DWS 72.69 77.67 0.13 0.14 0.15 0.12 0.14 0.11 0.11 0.12 0.16
DWS_NDP 75.84 80.86 0.13 0.13 0.14 0.13 0.15 0.11 0.12 0.12 0.17

Fig. 7. Difference in GEP model estimation of system costs and full dataset UC estimate of costs (% error) for model year (2020 or 2025) and input data series year
(2015 or 2016).

7 Objective function values for best solutions found: £48.3b (2020, year 2015
input), £47.6b (2020, year 2016 shapes), £44.7b (2025, year 2015 input), and
£43.7b (2025, year 2016 shapes)

8 Despite different errors in cost estimation for this case, the final expansion
plan for the model is very similar across all cases.
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and oversimplified by the ramp duration curve. For example, a high
ramp up may be easily met during an off-peak period but challenging
close to the peak. However, without the unordered series, this differ-
ence is not captured in the clustering. Additionally, the number of
consecutive ramping periods may cause different challenges for the GEP
model and result in more starts than alternating ramp up and ramp
down periods despite these being similar when converted to a duration
curve. The addition of the future net demand series again significantly
improves the results for the unordered series and duration curve series
(NDHF_S and NDHF_DC), with reductions in the average additional cost
over the best solutions found of 17.6% and 11.5% respectively. The
differences between performances for the same model year with dif-
ferent datasets (2015 or 2016 data) demonstrates the importance of
testing the selection against different inputs.

In Fig. 9, we compare the capacity expansion decisions for each
technology depending on the representative day selection approach.
The build plans for the 2020 model year are reasonably similar across
net demand clustering approaches for the 2015 input data and, as
shown in Fig. 8, perform poorly. A large improvement in cost is found
in the DWS_NDP case where less capacity is built overall and there is a
significantly higher reliance on storage than CCGT or peaking capacity.
Looking at the 2020 model year, using the 2016 input data we see a
similar result where reduction in overall capacity and increases in
storage capacity tend to perform better. The addition of the ramp
duration curve improves over the duration curve alone (ND_DC_RDS
and ND_S_DC_RDS) in this way as does the inclusion of future net de-
mand in the clustering (NDHF_S and NDHF_DC). The DWS approach
leads to significantly lower build of capacity, in particular conventional
capacity, and as seen, this results in a less optimal solution9. However,
the inclusion of the peak net demand day (DWS_NDP) remedies this
issue resulting in significantly higher capacity mostly in the form of
storage. The expansion plan derived from this approach then has the
highest reliance on storage and the lowest final costs.

In the 2025 model year, there is a more significant difference be-
tween the approaches. For the 2015 input data, the DWS and DWS_NDP
series rely entirely on storage and perform relatively well in terms of
cost as shown in Fig. 8, although the addition of a single CCGT in the
NDHF_S case performs the best. The cases where a large amount of
conventional capacity is built (with or without storage) perform poorly.
Again, we see the DWS approaches have the highest reliance on storage
technologies. With the 2016 input data there are relatively lower

differences in the costs of the expansion plans, despite differences in the
plans themselves indicating a relatively flat solution space where
multiple different build approaches perform similarly.

3.2. Extreme point inclusion

In this section, we report results for the inclusion of additional ‘days
of interest’ to attempt to capture the representation of future system
challenges (see Table 4 for case descriptions) as opposed to the inclu-
sion of ramp duration curves in the clustering. We focus on the three
cases which provided the best results overall in the previous sections
NDHF_S, NDHF_DC, and DWS_NDP.

3.2.1. Clustering results
The preselection of a cluster medoid to represent a cluster reduces

the ability of the clustering algorithm to minimise the Euclidean dis-
tance (as it is now more constrained) although not greatly in most cases.
For brevity these results are included as supplementary material.

3.2.2. Expansion planning model results
Fig. 10 compares the cost estimation errors with the forced inclusion

of different ‘days of interest’ in the clustering, while Fig. 11 reports the
average cost over the best solution found. Fig. 11 demonstrates the
lowest costs are found where the DWS_NDP series has any of the days
that include relatively low values of net demand (the minimum net
demand value, and greatest differences between minimum and max-
imum net demand). However, this improvement does not seem robust
as in these cases the ability of the GEP model to estimate costs is re-
duced, increasing the error in cost estimation two or more times,
making it difficult to conclude that this change is an improvement.
When examining the clustering based on ordered net demand series
NDHF_S, we see both an improvement to cost estimation and to quality
of the GEP solution over the full dataset in four cases. Three of these
cases relate to ramping requirements (“max ramp down”, “max con-
secutive ramp down”, “max consecutive ramp up”). While these cases
do not necessarily improve the representation of the ramp duration
curve as a whole (as measured by the NRMSD) they all result in the
inclusion of values near or at the low end of the ramp duration curve
which is not well represented without these medoids. The other medoid
that improves the solution is the min-max value distance which in-
creases slightly the storage built in two of the four cases (and un-
changed in the other two). This demonstrates the importance of ex-
treme points, as while including them generally performs poorly on
metrics relating to how close is the representative data to the under-
lying series (the distance metric and RMSD) they can drive more im-
portant dynamics in the GEP model. Effectively in this case, the

Fig. 8. Additional cost of expansion plan over best solution found for model year (2020 or 2025) and input data series year (2015 or 2016).

9 This result may not hold in a model with an exogenous capacity target that
is calculated completely independently of the modelled peak demand, as suf-
ficient capacity would be built to meet this target.
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inclusion of these dynamics is significantly more important for the GEP
decisions than the clustering would consider.

Finally, we find one extreme point that improves the GEP model’s
ability to estimate costs and the cost of the expansion plans across all
methods of representing input data, the inclusion of the maximum ramp
down (MRD). While again this addition does not improve the ability of
the selections to represent the ramp duration curve as a whole (as
measured by the NRMSD) without this inclusion the extreme low ramps
are particularly poorly represented.

In Fig. 12, we report the expansion plans where the maximum ramp
down day is included in the clustering. As discussed, the greatest cost
improvements are found in the two net demand data series (NDHF_S,
NDHF_DC) in the 2020 model year with the 2015 dataset. In these
cases, we see a relatively large 800 MW reduction in conventional ca-
pacity, replaced by 400 MW and 300 MW of storage respectively. In the

individual series clustering (DWS) we see a less dramatic shift towards
CGGT in the 2020 model year (400 MW increase in CCGT, 200 MW
reduction in Peaker, 100 MW reduction in storage) and a slight reduc-
tion in CCGT capacity in 2025 (400 MW in one case), all associated with
improvements of the cost of the solution. Overall, the best approach
found (DWS_NDP MRD) on average builds less than half the conven-
tional capacity and more than double the energy storage capacity
compared to a model using representative days selected from historical
net demand duration curves.

The maximum downwards ramp was not considered the most likely
candidate to improve results and we explore the source of this result
further. Firstly, taking the cases where the maximum downwards ramp
is included, we relax the ramping restrictions in the GEP model and find
that ramping constraints are tight enough to affect build decisions,
particularly in the high renewable penetration 2025 year. Next, we

Fig. 9. Technology and capacity selected by GEP model depending on representative day selection approach and input dataset (2015 or 2016); (a) 2020 expansion
model (b); 2025 expansion model.

Table 4
Key for case abbreviations.

Abbreviation Data description

NDHF_S Historical and future year net demand as original chronological series
NDHF_DC Historical and future year net demand as duration curve used in clustering
DWS_NDP Individual historical demand, wind capacity factor, and solar capacity factor included in clustering. We relax the inclusion of the peak wind day, peak demand

day, and peak solar day and instead include the peak net demand day as a forced medoid

Abbreviation Forced inclusion of medoid description

MinV Forced inclusion of day with minimum value of net demand as medoid
GMMD Forced inclusion of day with greatest difference between maximum and minimum net demand value as medoid
GMMD6H Forced inclusion of day with greatest difference between maximum 6 h and minimum 6 h of net demand as medoid
MRU Forced inclusion of day with maximum ramp up in net demand as medoid
MRD Forced inclusion of day with maximum ramp down in net demand as medoid
MCRU Forced inclusion of day with maximum consecutive ramp up in net demand as medoid
MCRD Forced inclusion of day with maximum consecutive ramp down in net demand as medoid
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assess the build plan found without ramping constraints in the full UC
model (which feature lower levels of storage). We find that in the
higher renewable penetration 2025 model years, the build plans de-
termined considering ramping constraints perform significantly better
in 5 of the 6 cases with an average reduction in additional costs relative
to the best solution found of 35%. Finally, to ensure the changes in
build are reflecting the need to meet ramping constraints, we run the
full UC model without ramping constraints. We find, in this case, the
build plans derived from the GEP model without ramp constraints to be
lower cost, indicating the additional storage is only beneficial when
ramping constraints are considered. Given the situational improvement
of the inclusion of this medoid we recommend its inclusion is tested in
any modelling exercise, as it may not be material where ramping and
cycling challenges are less significant.

It is important to note that throughout this exercise the GEP model
has selected the storage technology with a very small energy storage
(two hours) and, in the few cases where the technology with more
storage capacity was selected, the expansion plan performed poorly in
the UC model over the full dataset. The fact that such a small storage
capacity benefits the system so significantly indicates that the benefits
are mostly due to its ability to address ramping challenges or peak
period challenges as opposed to moving energy from off-peak to on-
peak periods. This can additionally be seen when looking at an average
generation and charge profile for the storage which typically discharges
during the morning ramp up, charge during the middle of the day

(where costs can be much higher than overnight), and again discharges
for the evening peak. In some representative days the storage even
discharges during the overnight periods which appears to help deal
with volatility in wind production.

3.3. Assessment of scaling methodology

The method of adjusting clustering weights described in Section 2.3
has been used throughout to ensure that total and peak net demand are
accurately represented in the model. In this section we assess this
methodology by comparing to three alternatives: using clustering out-
puts without adjustment, scaling clustering to achieve annual total net
demand, scaling clustering to achieve annual total net demand while
maintaining the peak annual net demand as described in Section 2.3.

Firstly, we report, in Fig. 13, the size of the error in total net demand
that results from using the days and weights selected by the clustering
directly without any adjustment. We compare this value with the size of
the scalars calculated by the optimisation to remove this error. Fig. 13
demonstrates that the clustering can make significant errors when only
clustering on historical net demand data (ND_) and these errors increase
as the penetration of renewables increases with the error, more than
doubling between the 2020 and 2025 model years. The series that also
include future net demand in the clustering (NDHF_) perform sig-
nificantly better as is to be expected based upon the discussion in
Section 2.2.2. When the clustering is based upon the underlying series

Fig. 10. Average difference in GEP model estimation of system costs and full dataset UC estimate of costs (% error), average over all input data series and model
years.

Fig. 11. Average additional cost of expansion plan over best solution found for model year (2020 or 2025), average over all input data series and model years.
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(DWS and DWS_NDP) the errors are slightly higher than when future
net demand is directly included (NDHF_) and are likely to be significant
for the GEP model (ranging from 1.6% to 3.3%).

In Fig. 14 we report the results of using different approaches to
remove the error in total net demand in the GEP model. In this as-
sessment we fix the expansion plan decisions (the set of build decisions)
for each case and assess the estimation of costs under each type of
scaling and compare to costs estimated for that expansion plan over the

full dataset. This method provides the most direct comparison between
the different methodologies but likely underestimates the differences in
using these methodologies in practice. The scaling methodology where
the peak is not maintained is likely to lead to different build decisions,
potentially without enough resources to meet peak demand, however
that effect is not possible in this case where all build decisions are set.
These differences would make it more difficult to compare between the
approaches as they would be assessing the accuracy on different

Fig. 12. Technology and capacity selected by GEP model depending on representative day selection approach, including identified days of interest, and input dataset
(2015 or 2016); (a) 2020 expansion model; (b) 2025 expansion model.

Fig. 13. Average absolute error in annual total net demand that results from using clustering outputs directly in model (%) and average absolute scalar calculated by
weighting optimisation to remove error.

I.J. Scott, et al. Applied Energy 253 (2019) 113603

14



systems. In this approach we are directly assessing the differences in the
representation of net demand in a comparable system.

Fig. 14 demonstrates the importance of scaling with large increases
in the GEP system cost estimation errors, where there are large errors in
the clustering outputs as reported in Fig. 13. The weighting metho-
dology provides a 60.5% improvement (from 5.5% to 2.2% on average)
in the magnitude of errors made in the estimation of costs by the GEP
model against using the clustering outputs directly. We find that the
scaling maintaining peak method performs better than just scaling
alone, however, that a 11.5% improvement over this approach is
achieved with the weighting methodology on average. As expected,
based on the discussion in Section 2.3, we find the error in GEP esti-
mation of costs to be higher than the error in net demand. Additionally,
we see that the benefits of scaling or adjusting weights are clearly
proportional to the size of the error made by the clustering. Where the
error in total demand is small, the benefits of removing this error will
clearly be smaller. In the cases where future net demand is included in
the clustering process (NDHF_) and errors in total demand are lower,
the weighting methodology only performs slightly better than using the
outputs directly, improving cost estimation errors 13.5% (from 2.30%
to 1.99% average across cases) and is only 2.2% better than adjusting
net demand while maintain peak. In the cases where we cluster on
historical net demand and the error in total demand is high, the
weighting methodology performs 81.7% better than the unadjusted
inputs and 18.5% better than the scaling maintain peak. Importantly,
the weighting methodology performs well compared to the other
scaling methodologies in the cases where we cluster based upon the
underlying data series (DWS_), improving cost estimation errors by
7.6% against the unadjusted cluster outputs and performing 15.6%
better than the scaling methodology that maintains the peak. In the best
performing case overall (DWS_NDP MRD) the weighting improves er-
rors 28% against not scaling the outputs and 1% against scaling
maintain peak, and in the best case without the inclusion of extreme
points (DWS_NDP) it improves errors by 83% and 36%.

4. Conclusions

In this paper, we have demonstrated the importance of carefully
performing the clustering of representative days for generation expan-
sion planning. While representative day selections had the same peak
load and total energy to be met in the generation expansion planning
model, the generation expansion plans differed greatly among re-
presentative day selection methods in terms of both the total capacity to
be added and the technology selected. The differences between the best

and worst expansion plans range in cost between £350m and £690m
(large in comparison to the modest investment in new units of
£400m–£2bn).

Firstly, we addressed a typical issue with deriving representative
days for generation expansion planning from a clustering process that
results in the target level of net demand not being represented in the
model. We presented a method for ensuring that the results from the
clustering algorithm achieve this targeted level of net demand in the
system without altering the underlying net demand shapes that are
observed or predicted from historical data, an issue found with other
approaches in the literature. This method resulted in an average error of
the generation expansion planning model 61% lower compared to using
the clustering outputs directly and a 12% improvement against alter-
native methodologies that scale net demand levels found in the litera-
ture.

For the clustering process, we found the largest improvement to the
clustering when using net demand was gained by including both the
future (high renewable penetration) and historical (low renewable pe-
netration) net demand associated with each day in the clustering. When
clustering solely on historical net demand, the algorithm is prone to
group together days that are high load - high renewable production
with days that are medium load - low renewable production days. While
these are similar in the historical data set, as renewable capacity in-
creases into the future, the days produce very different net load profiles.
We found the clustering does not select days to represent the extreme
low values of the net load duration curve without this approach.

We found additional gains by ensuring that days containing specific
ramping features are included as cluster medoids. This approach per-
formed better than attempting to add a ramp duration curve to the
clustering. We found it is important to include the largest downwards
ramp in all cases tested here. The large improvements to solution cost
seen by the addition of this extreme point indicate that clustering alone
cannot be relied upon to capture ramping dynamics and the contribu-
tion energy storage can make. We find, however, no consistent benefit
to including several other potential extreme points such as the
minimum value, which we expected to be important for driving cur-
tailment costs.

Overall, we found the best results when clustering based on the
individual demand, wind, and solar series as opposed to the chron-
ological net demand series or the net demand duration curve based
approach (or any combination of the two or ramp duration curves). This
result only holds, however, when we include as medoids the days that
feature the peak net demand period. This result is improved by the
addition of the peak single period ramp down in net demand. In

Fig. 14. Average absolute error in GEP model estimation of full year costs under different weighting methodologies.
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comparison to a simple clustering on historical net demand duration
curves, this approach improves the accuracy of the estimation of costs
by 71% on average (76% including the additional extreme point) and
reduces the difference to the best solution found based on cost by 57%
on average (65% including the additional extreme point).

We found important technology mix implications for the expansion
plans selected by the GEP model based upon the different approaches to
clustering input data. In most cases, improvements to solution optim-
ality are gained where conventional capacity is substituted by storage
capacity indicating that an oversimplification of future system chal-
lenges biases the model against energy storage. The best approach
found on average builds less than half the conventional capacity and
more than double the energy storage capacity, compared to a model
using representative days selected from historical net demand duration
curves. Based on the specific energy storage technology that was se-
lected, we find it probable that this storage is beneficial for improving
ramping costs as opposed to shifting large quantities of additional re-
newables between on- and off-peak periods. This finding is reinforced
by the fact that the inclusion of medoids relating to ramping (particu-
larly downwards ramping) improved the solution quality and led to a
greater preference towards storage over conventional technologies.

The good overall performance of clustering based on underlying
demand, wind, and solar series, combined with extreme points based on
net demand indicates that there is promise in extending the metho-
dology developed here to cases of endogenous renewable build. Future
work of the authors intends to expand the weighting approach pre-
sented here to ensuring that renewable capacity factors are accurately
modelled in representative days for endogenous renewable build
modelling. In addition, we aim to explore how extreme points derived
from the combination of underlying data series (demand, wind, solar)
and intraday ramping dynamics can be represented in this case.
Additionally, while this application focused on capturing the dynamics
that would ensure that the role energy storage could play in meeting
future power system challenges was accurately represented, this ap-
proach could be extended to ensuring that the representative days se-
lected reflect the potential contribution of demand side response.
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