
IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 2, FEBRUARY 2011 675

PIC Codes in New Processors: A Full Relativistic
PIC Code in CUDA-Enabled Hardware

With Direct Visualization
Paulo Abreu, Ricardo A. Fonseca, João M. Pereira, and Luís O. Silva

Abstract—Kinetic plasma simulations using an electromagnetic
particle-in-cell (PIC) algorithm have become the tool of choice
for numerical modeling of several astrophysical and laboratory
scenarios, ranging from astrophysical shocks and plasma shell
collisions, to high-intensity laser–plasma interactions, with appli-
cations to fast ignition and particle acceleration. However, fully
relativistic kinetic codes are computationally intensive, and new
computing paradigms are required for one-to-one direct modeling
of these scenarios. In this paper, we look at the use of modern
graphics processing units for PIC algorithm calculations, dis-
cussing the implementation of a fully relativistic PIC code using
NVIDIA’s Compute Unified Device Architecture, also allowing one
for simultaneous visualization of simulation results with negligible
impact on performance. Details on the algorithm implementation
are given, focusing on grid-particle interpolation and current
deposition and also on the direct visualization routines. Finally,
we present results from a test simulation of an electron/positron
plasma shell collision, focusing on code validation and perfor-
mance evaluation.

Index Terms—Parallel algorithms, plasma simulation,
visualization.

I. INTRODUCTION

THERE are many plasma physics scenarios where fully
relativistic particle-in-cell (PIC) codes play a key role in

providing essential understanding of the underlying physical
processes involved. Due to the the problems they try to solve,
PIC implementations tend to be used in large-scale simulations
that require large computing resources, usually from tens to

Manuscript received February 5, 2010; revised August 20, 2010;
accepted October 12, 2010. Date of publication December 3, 2010; date of
current version February 9, 2011. This work was supported in part by Faculdade
de Ciências e Tecnologia, Portugal, under Grants SFRH/BD/17870/2004 and
GRID/GRI/81800/2006 and in part by the NVIDIA Professor Partnership
Program.

P. Abreu is with the Institute for Plasmas and Nuclear Fusion, Tech-
nical University of Lisbon, 1169-047 Lisbon, Portugal, and also with the
UNIDCOM/IADE, Research Unit in Design and Communication at IADE
Creative University, 1200-649 Lisbon, Portugal (e-mail: paulotex@ist.utl.pt).

R. A. Fonseca is with the DCTI/ISCTE-Lisbon University Institute,
1649-026 Lisbon, Portugal, and also with the Institute for Plasmas and Nuclear
Fusion, Technical University of Lisbon, 1169-047 Lisbon, Portugal (e-mail:
ricardo.fonseca@ist.utl.pt).

J. M. Pereira is with the Instituto de Engenharia de Sistemas e Computadores,
1000-029 Lisbon, Portugal (e-mail: jap@inesc.pt).

L. O. Silva is with the Institute for Plasmas and Nuclear Fusion, Technical
University of Lisbon, 1169-047 Lisbon, Portugal (e-mail: luis.silva@ist.utl.pt).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPS.2010.2090905

thousands of computing cores. Furthermore, the last 15 years
have witnessed a trend in the high-performance computing
(HPC) scientific community to move from highly customized
shared-memory systems to cheap distributed-memory systems,
often built with commercial off-the-shell computers. However,
since the CPU annual increase in speed has almost stopped, this
cheap clusters have started to show their limitations, particu-
larly in computational power (high latency), space, and power
needs. As the physical problems these computing clusters try to
solve increase in complexity—more memory needs (in capacity
and bandwidth) and computational power—the scientific com-
munity has started looking for other possibilities from where to
get their next HPC system.

Programmable graphics processors (GPUs) have received
attention from the scientific computing community since their
introduction on market in 2000 [1]. They are a highly interest-
ing alternative to the usual CPUs due to their high computing
power (recently over a teraflop per GPU chip), their relative low
cost and power consumption, and their capability for massive
data parallelism (several thousand simultaneous threads are
available on a single chip of a recent GPU). Since 2007,
NVIDIA has been offering an architecture (hardware, drivers,
application programming interface, and software development
kits) for HPC on GPUs called CUDA (Compute Unified Device
Architecture). In particular, “C for CUDA” offers a high-level
interface to program and deploy high-performance applications
on GPus using a a C-like syntax and compiler.

In this paper, we will present an implementation of a full rel-
ativistic 2-D PIC code in CUDA. We will discuss the problems
that had to be overcome and the solutions we found which, in
most cases, are valid for deploying most particle mesh algo-
rithms in CUDA systems. We will also discuss performance
issues while implementing our validation test, a 2-D Weibel
instability. In addition, we will show how to take advantage
of the visualization/rendering capabilities of CUDA GPUs by
implementing a direct visualization system in our code that
allows one for live display of the results of the simulation
directly on the screen while this is running. These results
include rendering of the particles trajectories and the display of
different diagnostics [electromagnetic (EM) field, current, and
charge density]. All these can be easily achieved at interactive
frame rates for millions of particles and hundred of thousands
of grid cells.

The rest of this paper is organized as follows. In Section II,
we present the basic PIC algorithms that were ported to CUDA.

0093-3813/$26.00 © 2010 IEEE

676 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 2, FEBRUARY 2011

In Section III, we discuss the implementation of those al-
gorithms in “C for CUDA,” and in Section IV, the direct
visualization features and its integration with the simulation
code. In Section V, we present the validation of the code
by implementing a Weibel instability simulation. Finally, in
Section VI, we discuss the results and performance of the code,
and in Section VII, we will offer an overview and conclusions
of this paper.

II. BASIC ALGORITHMS

Directly modeling the interaction between all particles in
a plasma is only feasible for a relatively small number of
particles, given that this algorithm requires a number of op-
erations going with O(N2). Even on a petascale system, a
state-of-the-art kinetic plasma simulation with a total number
of particles of ∼ 1010 [2] would require ∼1 day for a single
time step. To overcome this limitation, numerical simulations
often resort to the particle-mesh method for calculations. In
this method, particles do not interact directly but rather through
fields defined on a grid. Field values are interpolated at particle
positions to determine the forces acting on each particle, and
particles are deposited back on the grid to advance field values.
Although the number of operations depends on the number
of grid cells, the number of particles, and the interpolation
schemes used, it is several orders of magnitude lower than a
particle–particle method.

For plasma physics simulations, this algorithm is generally
referred to as the PIC algorithm [3], [5]. Simulation space is
discretized as a regular grid, and the EM field values are defined
on this grid. To advance simulation particles, we use the Lorentz
force acting on the particle, calculated by interpolating the field
values at the particle positions. The electric current resulting
from particle motion is deposited back on the grid and used to
advance the values of the EM field.

In our implementation, particles are advanced using a leap
frog scheme. Particle positions x and fields are defined at time
step ti and are used to calculate the Lorentz force acing on the
particle

u̇ =
q

m

(
E +

1
c

u
γ
×B

)
(1)

where u is the generalized velocity (u ≡ γv); γ is the Lorentz
factor; q/m is the charge/mass ratio of the particle; and E and
B are the EM field interpolated at the particle’s position.

The interpolation of the values of E and B at the particle can
be seen as the interaction between the simulation grid and the
particles. For linear interpolation, this requires the values of two
nearest grid points for every direction, leading to four points in
2-D and eight points in 3-D. It should also be noted that, as we
will discuss later, the E and B are defined on a staggered grid
(see Fig. 1), which means that the grid points required for each
field component may be different.

Advancing particle generalized velocity from time step
ti − 1/2 to ti + 1/2 is done using the so-called Boris pusher
[4], [5], which is a second-order accurate time-centered nu-
merical technique that has been successfully applied in many

Fig. 1. Staggered 2-D grids in PIC codes.

simulation algorithms [6], and in particular, it has been widely
adapted for PIC codes. This technique separates the effects
of the electric and magnetic forces in four steps, starting at a
time ti − 1/2, as follows: i) add half the electric impulse to
u, obtaining u′; ii) rotate u′ with half the magnetic impulse,
obtaining u′′; iii) rotate u′ with the full magnetic impulse using
u′′; iv) add the remaining half of the electric impulse.

Using the generalized velocity at time step ti + 1/2, we can
then advance the particle positions by doing

xi+1 = xi +
ui+1/2

γi+1/2
Δt (2)

To advance the EM field values, we rewrite Maxwell’s equa-
tions, particularly Faraday’s and Ampére’s law, to give (again
in cgs units)

∂E
∂t

= 4πj− c∇×B (3)

∂B
∂t

= − c∇×E. (4)

Starting from a known set of field values at t = 0, we
can then advance the EM field components at each time step
provided that we find the rotational operator of the E and
B fields and electric current j resulting from particle motion.
The rotational operator is approximated by a finite-difference
operation on the grid using the technique developed by Yee [7].
To improve accuracy, the field values are not defined in the same
points inside a grid cell but rather as staggered grids, as shown
in Fig. 1, which effectively results in a second-order spatially
accurate algorithm. To improve the time accuracy, we advance
the fields in three steps, starting with E and B defined at a time
ti and j defined at a time ti+(1/2), as follows: i) advance B
by half a time step using (4); ii) advance E by a full time step
using (3) and the intermediate B; iii) advance the intermediate
B by the remaining half time step. This method allows one for
a second-order accuracy with no memory penalty.

The electric current resulting from particle motion also needs
to be defined in the staggered grid. However, because of the
finite difference approximation of the rotational operator, a
simple interpolation of qu/γ is not enough since it will lead
to charge conservation errors. To overcome this, current depo-
sition in PIC codes has currently two widely used approaches,
namely, the Villasenor–Bunemann method [8] and the
Esirkepov method [9]. Both methods ensure exact (analytical)

ABREU et al.: PIC CODE IN CUDA-ENABLED HARDWARE WITH DIRECT VISUALIZATION 677

TABLE I
NUMBER OF SMP AND TOTAL NUMBER OF SP

FOR SOME CUDA-ENABLED HARDWARE

charge conservation, and for linear interpolation, both lead to
the same result. However, the Villasenor–Bunemann method
requires that particle motion is split into motion segments
lying inside the same cell, which is generally realized with
a set of “IF” statements, so the Esirkepov methods generally
yields better performance [10], so we chose the latter for our
implementation.

III. CUDA IMPLEMENTATION

A. CUDA Overview

CUDA [11] is both a hardware and a software architecture for
creating general purpose programs on a GPU. At the hardware
level, it is available for NVIDIA’s GeForce series (8000 and
better), the Tesla systems, and the Quadro equipment. At the
software level, it has a software stack composed by the hard-
ware driver, the C-like API and its runtime, and several higher
level mathematical libraries (CUFFT, CUBLAS).

With CUDA, the GPU is viewed as a compute device capable
of executing a very high number of threads in parallel. Hence, it
operates as a coprocessor to the main CPU, or host: each part of
an application that is executed many times, but independently
on different data, can be isolated into a function, called a kernel,
that is executed on the device as many different threads.

CUDA hardware has a set of multiprocessors [called Stream-
ing Multiprocessors (SMP)], whose number varies depending
on the GPU model. In the current architecture, each multi-
processor has eight processors [called Scalar Processors (SP)],
which set the number of concurrent threads. Table I shows the
number of SMP and the total number of processors for some of
the CUDA-enabled products we have access to.

In what memory is concerned, all the SP cores in a chip
have access to whole RAM memory of the device, which is
called the Global Memory. In addition, all SP cores in an SMP
have access to a certain amount of memory in the SMP, called
the Shared Memory. This shared memory is usually 32 kB in
size and has access times two orders of magnitude faster than
global memory—typically, 400 cycles for global memory and
four cycles for shared memory. Finally, each SP also has access
to its own local memory (8 kB) and 32-bit registers (32).

The batch of threads that executes a computational kernel
is organized as a grid of thread blocks. Each thread block is
a batch of threads that can cooperate together by efficiently
sharing data through the fast shared memory and synchronizing
their execution to coordinate memory accesses. From the pro-
grammer’s point of view, all threads in a block can cooperate
(sharing memory and synchronizing) as if they are running

concurrently. On the other hand, blocks in a grid cannot cooper-
ate. This thread granularity allows for kernels to run efficiently
on various devices with different parallel capabilities: a device
with few parallel capabilities may run all the blocks of a grid
sequentially, while a device with a lot of parallel capabilities
may run all the blocks in parallel; usually, it is a combination of
both.

B. Particle Push

Due to the lightweight thread architecture in CUDA, it is
possible to launch hundreds of thousands of threads at once and
let the CUDA implementation serialize the blocks of threads.
This means that it is possible to push just one particle per thread
and have as many pusher threads as particles or to push several
particles per thread. We have implemented a parameter in our
code that defines the number of particles pushed per thread.
This allows one for a customized balanced between calculation,
memory usage, and memory bandwidth.

To make sure that we have the maximum occupancy of the
GPU, we have to estimate the number of threads per block,
which depends mainly on the amount of the device’s memory
usage. In our implementation, we found 64 to be the best
choice. Since the number of particles might not be divisible by
the number of threads per block, we can either add a test at the
beginning of each push kernel that checks if the current thread
number accesses a valid particle index or do two launches
of the kernel: in the first launch, we launch as many threads
blocks as possible without going beyond the total number of
particles, and the next launch processes the rest of the particles
in one incomplete block. We have found the latter approach
to be marginally faster than the former (about 1% better with
131 thousand particles).

CUDA hardware only has one double precision arithmetic
unit for each SMP. This means that calculations in double
precision have a performance that is ∼ 9× lower than in
single precision. To allow one for the use of single precision
calculations, and thus fully utilize the computational power of
the CUDA hardware, particle positions cannot be defined using
the corner of the simulation box as a reference. Instead, we
must keep track of the cell were the particle is located and
define the particle position referenced to the cell corner. In our
case, absolute positions are defined with two arrays, namely,
one contains the cell number the particle is in (integer) and the
other the normalized position (a single precision float in the
interval [0, 1]) inside the cell, referenced to the lower left vertex.
As particles leave a given cell, their positions are corrected so
that they are referenced to the new cell. These extra calculations
incur in a small performance penalty, but the overall gain from
using single precision is far greater.

Another relevant issue in high-performance codes is memory
bandwidth. In order to increase memory access bandwidth, the
copy from the global to the shared memory of particle quantities
like r and u is done in a coalescent fashion by all threads in
a block whenever possible. Memory bandwidth from/to global
memory can be further increased by sorting the arrays with
the particles’ data (relative position, cell number, velocity, and
charge) according to the cell each particle belongs to. If these

678 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 2, FEBRUARY 2011

Fig. 2. Illustration of current deposition in the Esirkepov method. The 16
marked cells have current deposited, although the bottom four and the left four
have no deposit, as stated in [9].

arrays are sorted in global memory, then all accesses have
maximal coherence, in particular, while accessing the EM field
array for interpolation. This ensures that accessing particle data
are always coherent if we have one thread per particle.

The code allows one for each thread to loop through several
particles, pushing one at a time. In this case, coherence in
reading and writing particle data is lost. However, there is an
important gain in reading E and B fields, since it is likely that
the same values will be used by several particles in the same
push thread. Not only less global memory access is needed
per particle, but also the computational operations of each push
thread is increased over the memory access operations (less data
access and more computation). Hence, for each particle in a
thread, a check is done: if the particle belongs to a different
cell than the previous particle, new values for the EM field
are read from the global to the local (registers) memory; if the
particles belong to the same cell, then the the EM-field values
have already been read and can be used for interpolation.

Finally, an interesting feature of modern graphic processors
is that they contain texture units that can do zeroth- and
first-order interpolation. Thus, if we store the EM field as
textures, linear interpolation at the particle’s position can be
done by hardware simply as a texture fetch. We have achieved
an increase in performance of 3× over a nontexture fetch
interpolation. However, this approach limits the usage of vari-
ables stored as textures to read-only. It is possible to update
a texture with new values by changing its memory buffer to
global memory, but we found the overhead too expensive to be
worth it. Nonetheless, and although in this paper we use only
linear interpolation, it is interesting to note that higher order
interpolation have also been achieved in GPUs in general [12]
and in CUDA-enabled products in particular [13].

C. Current Deposition

Most of the current deposit algorithm explained in [9], where
for each particle we calculate the amount of current to be
deposited for each of the cells crossed during the last time
step motion, has a straightforward implementation in CUDA
architecture. However, since each particle will deposit current
in up to 16 cells in 2-D linear interpolation (see Fig. 2), particles
from many cells may be contributing to the current in any
given cell.

This step is then likely to produce a significant amount of
memory collisions, as several different threads try to deposit
the current in the same cell. These threads can be from the
same block, in which case, one might devise some kind of
synchronization between them, but they can also belong to
different blocks, in which case, synchronization is harder to
implement in an efficient way. However, several strategies are
available.

One solution is to serialize current deposition. This is very
simple to implement at the cost of a significant performance
penalty, even after parallelizing the deposition of each current
component. The cost depends on the number of threads that
would have to be queued. In CUDA, we would be effectively
running hundreds of thousands of threads (from one to a few
particles per thread) almost in serial, just three at a time (one
concurrent thread for each space component). The performance
hit is so significant (about two orders of magnitude) that it is
more effective to transfer the data back to the CPU just for the
current deposition and transfer it back to the GPU for the rest
of the simulation loop.

Another possibility is to take advantage of the particle sorting
per cell referred previously. If the particles are sorted according
to the cell they belong to (before the push), then we can
accumulate the current on one thread per cell basis: each thread
loops through all the particles in a cell and deposits the current
at each of the 16/25 vertices. If synchronization is guaranteed,
then we can be sure that only one cell is updated at a time. This
approach has the drawback of adding a sorting step at every
simulation cycle. The sorting penalty could be minimized by
adding more cells per thread and thus sorting every other time
step. A similar approach has been done in [14] by dividing the
simulation space in slabs that get assigned to threads blocks.
Since collisions are avoided in a block [15], no sorting is
required in a slab but only between slabs.

A third possibility is to use atomic operations. These opera-
tions ensure that there are no memory collisions by creating a
memory lock on a memory position being written by a given
thread. CUDA offers a limited set of atomic operations that act
both on global and shared memory. In particular, it provides
an atomic operation that allows one accumulation of values
for integer values, although such operation is not available for
floating point data. To overcome this limitation, we use the
atomicExch() function, which is also available for floating
point numbers. Given a memory address and a given value, this
function exchanges the given value with the one currently in
memory.

Using this function, it is possible to devise a simple algorithm
that simulates any atomic operation, as long as that operation is
commutative and has a neutral element, as follows.

1) Given a work value to accumulate at a certain position in
memory.

2) Ensure that it is different than the neutral element.
3) Atomic-exchange the previous value at that memory

position with the neutral element for the accumulation
function.

4) Accumulate the previous value with the work value,
generating a new value.

ABREU et al.: PIC CODE IN CUDA-ENABLED HARDWARE WITH DIRECT VISUALIZATION 679

5) Atomic-exchange the new value at the memory position.
6) If the value we got back is not the neutral element, this

means that some other thread placed this value there as a
result of its own calculation. So use this value as a new
work value and go to 3.

7) Otherwise, if it is the neutral element, finish.

The following pseudocode illustrates the steps described
previously:

function PSEUDOATOMICOPERATION(address, value)
work_value← value
while(work_value �= neutral_element) do

prev_value← atomicExchange(addr., neutral_element)
new_value← operation(prev_value, work_value)
work_value← atomicExchange(address, new_value)

end while
end function

In our first approach, we started by implementing the
pseudoatomic option. There are several advantages to this ap-
proach. First, it allows one for a straightforward code which is
easier to port from/to other multithreaded architectures which
might have a similar atomic exchange operation but may not
suffer from these global/shared memory issues. Second, this
allows us to avoid load balancing issues, since we can deposit
the current per particle and not per cell. On a per-cell current
deposit, a nonuniform particle distribution would necessarily
cause different loads throughout the threads: those dealing with
cells with less particles would finish first than those dealing
with more particles. With one particle per thread, or with a
more general n particle per thread approach, this nonuniform
thread load is avoided, since all threads are dealing with the
same number of particles and thus have the same amount of
calculations to do.

However, one disadvantage is that we have two atomic
exchanges per particle and per cell, which might slow down
the code seriously if the particles are ordered per cell inside
a block of threads. A simple solution is to initialize the array
of the particles’ positions in a way that minimizes the chance
that two consecutive particles’ indexes are unlikely to be inside
the same cell. Even better, all threads in a warp (the group
of 32 threads that are known to be synchronized by CUDA)
should be working with particles in different cells, preferably
cells that are far apart so that there are no collisions inside that
warp during current deposition. Although it is easy to initialize
the particles so that this condition is met, some care has to be
taken to ensure that it still holds throughout the simulation.
As the simulation evolves and particles are moved around,
this initial distribution condition will no longer hold and some
current deposition conflicts will occur, causing a degradation
in performance. When that degradation is higher than a certain
threshold, a redistribution of the particles over the threads has
to be done. This corresponds to a sorting operation and has
a certain penalty. However, the threshold for the sorting can
be adjusted so that this penalty is minimized in the overall
performance balance.

So our final implementation included the pseudoatomic op-
tion, a sorting operation, and a stride distance, that is, the

Fig. 3. Illustration of a stride during particle push and current deposition, so
that kernels in the same warp handle particles in different cells. p is number of
particles per thread and s is the stride.

Fig. 4. Illustration of the sequence call of the three different kernels required
for a full EM field update.

distance in particle index between the particles handled by one
thread and the next consecutive thread. This guarantees that the
atomic collisions were minimized during current deposition.
The sorting is done in three steps: we first copy the cell
index of each particle to a separate array; then, we generate
a sort index based on this array using a radix sort algorithm
available in CUDPP [16]; and finally, we shuffle the particle
data using the same sort index. In Section VI, a discussion on
the sorting penalty and the optimal stride value is presented.
Fig. 3 shows the implementation of the stride during particle
push and current deposition.

D. EM Field Update

Updating the EM field was done as described previously
[(3) and (4)] using the staggered grid of Fig. 1 and a three-step
finite-differences method. Actually, several kernels had to be
implemented and launched in sequence, since this step requires
at least two global synchronization steps, namely, one after the
update of the first half of the B field and another after the full
update of the E field. Each step is implemented as a kernel, and
between them an update of the guard cells is also necessary.
An overview of the sequence of different kernel launches is
shown in Fig. 4. All these kernels are launched as one thread
per cell—or one thread per lower left vertex of a cell.

E. Boundary Conditions and Guard Cells

The algorithm was implemented using Dirichlet periodic
boundary conditions, defining the simulation space as closed
and periodic. This means that the neighbors of the cells lying
at the lower boundary of the simulation will be the cells at
the upper boundary of the simulations and vice versa, and that
particles leaving one side of the simulation box will reenter on
the other side. From the point of view of the simulation grids,
this is implemented through the use of guard cells, which are
extra cells added at the simulation boundaries, where the values
from the grid points at the other boundaries are replicated.

680 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 2, FEBRUARY 2011

This allows one for a much simpler simulation algorithm,
where all cells are treated equally, and guard cell values are
updated after the iteration is complete. To this end, we have
implemented two different kernels to handle guard cells: one
adds the accumulated current density from the guard cells to its
correspondent physical cells in the grid, while the other copies
the EM fields from the physical border cells to the guard cells.
It should also be noted that this technique is similar to what
is used in distributed memory parallel PIC algorithms, where
guard cells in one computation device correspond to grid points
on a neighboring computation device and could in principle
be used in a system where multiple CUDA devices operate
cooperatively.

IV. DIRECT VISUALIZATION

As with any numerical experiment, visualization plays a
critical role in PIC simulations. This can be a time-consuming
and computationally demanding task that can benefit greatly
from the fact that simulation is being run on the GPU itself.
Since most of the CUDA-enabled devices available are graphic
processors (NVIDIA’s GeForce and Quadro boards), the data
are already available in video memory and can readily be dis-
played, avoiding time consuming memory transfers from CPU
to video memory. Even in CUDA hardware that is not a video
card, such as NVIDIA’s Tesla boards, the bandwidth throughput
to video RAM over PCI Express ×16 is very high (up to
1000 GB/s), allowing one for very efficient visualization. There
are also several postprocessing visualization diagnostics, such
as smoothing or energy calculations, that can make use of the
available computational power on the GPU, bringing an added
benefit to doing direct visualization. In this sense, we have
developed code in OpenGL that tightly integrates with our PIC
implementation in CUDA, expanding it to allow one for the
display and exploration of the resulting simulation data. This
expanded system is able to display millions of particles and also
to produce several diagnostics (EM field, current, and charge
density) and other custom diagnostics at interactive frame rates.

A. Particle (Point) Visualization

As with any particle code, particle point data are one of
the fundamental datatypes to be visualized. As explained in
Section III-B, particle positions are stored as normalized coor-
dinates to the grid cell, using values in the range [0, 1], together
with the particle cell index, stored as an integer. To display
particle (point) data in OpenGL, two approaches are available:
i) for each simulation particle, we could move the coordinate
system to the origin of each cell in the grid and render a point
in the particle position using the corresponding scale factor (the
cell dimension length); or ii) we could convert the normalized
particle coordinates and cell index to a global position array that
would be used to draw the particles.

The latter approach was chosen in this paper, since it offers
several benefits over the first, as follows.

• Handling different scaling in each dimension is easier
and more straight forward than with OpenGL coordinate
scaling.

Fig. 5. Example of direct particle visualization during a full 2-D PIC simula-
tion of a Weibel instability (positrons in cyan and electrons in yellow).

• The conversion of coordinates can be done very efficiently
in CUDA, since all the data are independent from one
another and is already available in the GPU memory.

• After conversion, the data can be displayed very fast in
OpenGL using a Vertex Buffer Object (VBO) [17, ch. 2].
VBOs cannot be used efficiently in the first method.

Particle visualization is then done using a CUDA kernel
that converts from normalized to absolute coordinates. This
conversion is done in a single-pass maximizing memory band-
width. The resulting data are then used as a vertex buffer object
to be displayed in one single OpenGL render command. All
operations are realized in video memory achieving a minimal
overhead. Fig. 5 shows the direct particle visualization during
the simulation of a 2-D Weibel instability.

B. Grid Visualization and Diagnostics

Being a particle-mesh algorithm, visualization tools for PIC
codes are also required to handle grid data, and we have imple-
mented several OpenGL routines for this type of visualization.
They take advantage of the programmer interoperability of
textures between OpenGL and CUDA. The main idea is to use
data in CUDA global memory (GPU’s RAM) as an OpenGL
texture to be rendered and displayed. Again, this allows one
for fast rendering, since no transfer of data from the CPU
to the GPU is necessary. We have also implemented several
grid-related diagnostics, which are particularly adequate for
GPU algorithms, such as vector field magnitudes or EM field
energies. Fig. 6 shows a direct visualization of the charge
density of the electrons during the formation of a 2-D Weibel
instability, described in detail in Section V later, and Fig. 8
shows the transverse magnetic field energy evolution, B2

1 + B2
2 ,

at four different stages of this simulation.

C. Interactivity

Interactive control of direct visualization was also imple-
mented, to simplify interaction with the simulation code and
for easily switching between the several available diagnostics.
The routines implementing interactivity must be unobtrusive,

ABREU et al.: PIC CODE IN CUDA-ENABLED HARDWARE WITH DIRECT VISUALIZATION 681

Fig. 6. Direct visualization of charge density of electrons during the formation
of a Weibel instability.

Fig. 7. Overview of the complete code.

so that the simulation performance does not suffer too much,
but it also needs to offer enough interactivity to allow the user
to have enough control over the visualization and diagnostics.
Our choice of implementation went to OpenGL’s GLUT, pro-
viding a lightweight multiplatform API, with minimal impact
on performance, and a simple integration with the CUDA
GPU simulation code. Fig. 7 shows a generic overview of a
simulation cycle, including parsing user events and rendering.
To minimize the impact on performance, it is also possible
not to update the visualization at every time step, but only at
larger intervals, by doing several simulation cycles per event
parsed, or even to skip rendering and user interaction altogether
if maximum performance is required.

Finally, we have also added the possibility to control simu-
lation parameters interactively, like the number of particles per
cell or the grid spatial resolution, restarting the simulation with

the new settings. This is especially useful in testing phases, as
it allows one to quickly scan the effect of certain code changes
for various simulation scenarios.

V. APPLICATION TO WEIBEL INSTABILITY

We have tested our CUDA simulation code by running a
well-known benchmark problem of the Weibel instability in
electron–positron plasmas [18, and references therein]. In this
simulation, two plasma clouds, one electron cloud and one
positron plasma cloud, initially moving perpendicularly to the
simulation plane with some temperature distribution, are set
to evolve self-consistently using a fixed neutralizing ion back-
ground. The simulation parameters were as follows:

Generalized velocity: u = γv = (0; 0;±0.6), with species 1
(electrons) having the positive velocity and species 2
(positrons) the negative velocity.

Thermal distribution: uniform guassian with 0.1 width.
Grid parameters: number of cells: 128 × 128; total simula-

tion space: 12.8c/ωp × 12.8c/ωp.
Time step: Δt = 0.07, which, together with the grid size,

satisfies the Courant condition.

In this scenario, the evolution of the plasma clouds is gov-
erned by the Weibel instability, leading to the formation of
current filaments that then coalesce leaving behind a set of
plasma bubbles that remain empty (in 2-D), as shown in Figs. 5
and 6. These bubbles remain stable, with the plasma pressure
being balanced by the radiation pressure of the EM fields
trapped inside the bubble. The initial kinetic energy of the
particles is partially transferred to the EM fields, leading to
the formation of magnetic field loops that slowly merge until
the simulation reaches a steady state, as shown in Fig. 8.

Most of the simulations were done with 36 (6 × 6) particles
per species per cell, but this parameter could be changed
interactively. The simulations completed successfully in several
CUDA-enabled systems. The physical results were validated
against the EM-PIC code OSIRIS [19] in single precision, using
the same simulation parameters, giving consistent macroscop-
ical results both on the growth rate of the instability and di-
mensions of the formed structures. The small differences found
were related to a different choice of random number generator
and differences in the particle order for current deposition,
which leads to minor differences due to numeric roundoff
issues.

VI. RESULTS AND ANALYSIS

The performance of the CUDA PIC code was evaluated
using the simulation mentioned in the previous section. The
code was run with two different configuration of particles:
8 particles per cell (4 for each species), giving a total of
131 072 particles (further referenced as the 131 kpart run), and
72 particles per cell (36 for each species), giving a total of
1 179 648 particles (referenced as the 1.2 Mpart run). Table II
presents an overview of the most relevant results using a
Tesla C1060 board for simulation and a Quadro FX 1800 for
rendering.

682 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 2, FEBRUARY 2011

Fig. 8. Example of direct visualization of diagnostics. These four pictures are screen captures of B2
1 + B2

2 during the formation of a 2-D Weibel instability.

TABLE II
TIME MEASUREMENTS OF A FULL PIC CUDA 2-D IMPLEMENTATION OF

A WEIBEL INSTABILITY. GRID DIMENSIONS ARE 128 × 128 CELLS.
THE SYSTEM USED A TESLA C1060 BOARD FOR CUDA AND A

QUADRO FX 1800 FOR RENDERING

We also ran our code on the CUDA devices listed in
Table I. Our purpose was to evaluate NVIDIA’s claims on
the portability of CUDA code across a wide range of devices
of different computational capabilities. Although we noticed
obvious performance differences, our code produced consistent
results across all equipment. The Tesla C1060 was the one that
presented the best computational performance, so it is the one
used throughout this paper.

For comparison, we implemented a CPU version of the GPU
algorithm and ran it on the host machine, an Intel Xeon E5420
2.50 GHz with 6 MB cache. The CPU code was compiled using
gcc version 4.3.2 with full optimizations enabled (−O3). The
results, using one core of the CPU, were 401 ns per particle on
the 131 kpart run and 379 ns per particle on the 1.2 Mpart run.

It is interesting to note the difference in performance between
the 131 kpart and the 1.2 Mpart runs. The reason is that below
one million particles, the Tesla C1060 is not quite full yet and
does not have enough threads to hide the memory latency in
transfers between global and shared or register memory.

The rendering time can be considered irrelevant (less than
0.05% of a cycle). Even if we manage to lower the cycle time
by one order of magnitude, it will still be acceptable if direct
visualization is desirable.

We have also estimated the timings for the different parts
of the algorithm. It was possible only to estimate and not
have a very precise evaluation since in order to have some
parts of the algorithm active, others also had to be active.
For example, current deposition only works effectively with
sorting enabled. Since it is possible to time the sorting step
without current deposition, but not the other way around, we
estimate the current deposition step by subtracting the sorting
time from the total of current deposition and sorting. Table III
and Fig. 9 show the time duration of the different push steps:
reading and writing out the particle data from/to global memory
to/from registers, sorting the particles’ array according to the
cell’s index, interpolating the fields at the particle’s position,
calculating the new velocity and advancing the particle, and
depositing the current for each particle.

ABREU et al.: PIC CODE IN CUDA-ENABLED HARDWARE WITH DIRECT VISUALIZATION 683

TABLE III
TIME ESTIMATIONS FOR DIFFERENT PARTS OF THE PARTICLE PUSHER

ALGORITHM. THE SIMULATION USED THE 1.2 Mpart RUN

AND 128 × 128 CELLS

Fig. 9. Percentage of time spent at each step of the pusher algorithm. Based
on the values from Table III.

The previous timings do not show the field update step, since
it depends on the number of cells and not on the number of
particles. The results were 9 ns per cell for the complete cycle
shown in Fig. 4. During the complete simulation cycle, this
value is not relevant, since usually one has much more particles
(millions) than cells (tens of thousands). For example, in our
1.2-Mpart run, the total time per cycle was 46 ms, of which just
0.15 ms corresponded to the EM field update.

We have implemented several of the performance parameters
exposed in previous sections and evaluated their impact on the
performance of the code. The optimal number of threads per
block depends on the kernel in use. We found that a number of
64 or 128 were optimal for the pusher kernel (that also includes
field interpolation and current deposition), and that 128 was
best for the field update. These values do not depend on the
number of particles or of vertices but more on the amount of
shared memory and registers required per kernel.

To avoid collisions during current deposition, it should be
avoided that two consecutive threads handle particles on the
same cell (Section III-C and Fig. 3). So we implemented a stride
parameter that defines the index distance between the particles
handled by two consecutive threads. Moreover, to increase the
amount of arithmetic operations per memory access, we have
implemented a parameter that defines the number of particles
handled by each thread. Interestingly, we have found these
parameters to have similar effects. When handling one particle
per thread, a stride of 4× the number of particles per cell
guaranteed best performance and minimal collisions. Similarly,
with a stride of one, we have found that handling 4× the number
of particles per cell per thread achieved a similar performance.
Fig. 10(a) and (b) represent the variation in performance per
particle for different particles per thread (different lines) and

different stride sizes (x-axis) for the 1.2-Mpart run. Fig. 10(a)
refers to particles per thread that are submultiples of the par-
ticles per cell and Fig. 10(b) to particles per thread that are
multiples of the particles per cell. As already said, the best
performance is achieved with a stride of 1 and 4× the number
of particles per cell per thread (39 ns per particle). However, a
stride of 4× the number of particles per cell with one particle
per cell gets a similar performance.

Two other parameters were implemented but had to be dis-
abled for best performance. They were the possibility to seri-
alize the launching of kernels at the CPU level and not to sort
at every time step. It was considered that to further minimize
memory collisions during current deposition, the kernel threads
could be launched in batches, thus guaranteeing that the CUDA
device was loaded in a manner that minimized the risk of two
particles updating the current in the same cell at the same time.
This meant that some part of the thread block control was made
at the CPU level and not by the CUDA implementation. This
proved to have worse performance than launching all threads
at once. Moreover, not sorting at each time step might save the
6-ns step without incurring in too much extra memory conflicts.
This was not the case. The memory conflicts by not sorting
increased the current deposition by several tens of nanoseconds,
so that in the end best performance was achieved by sorting at
each time step.

Based on the values of Table III, we also estimated how
efficient the device was being used. Table IV shows the esti-
mated number of single precision floating point operations per
second [in gigafloating point operations per second (GFLOPS)]
of different parts of the pusher algorithm, and also of the
whole algorithm. A comparison with the peak performance of
the Tesla C1060 [20] is also shown. The same code running
on a single core of the Intel Xeon E5420 (theoretical peak
performance of 5 GFLOPS) achieved 1.25 GFLOPS. Hence,
it can be estimated that for this algorithm one Tesla C1060 can
replace 3 Intel Xeon E5420 (or approximately 11 cores).

We have also evaluated the penalty for adding user inter-
action during the simulation. Table V shows the time it takes
for our system to simulate different number of cycles with and
without user interaction for the 1.2-Mpart run.

The measured penalty, although significant larger than the
rendering, is also still acceptable. For simulations that run for a
high number of cycles, it might be desirable to lower the user
interaction priority, that is, to run several cycles per user event
parsing. The same approach is to be used if the cycle time is
made significantly shorter. This possibility has been included
in the code, represented as the third line from the bottom of
Fig. 7.

The application of this algorithm to large-scale plasma sim-
ulations is ultimately limited by the total memory available on
the CUDA device (currently up to 6 GB on a Tesla C2070),
with state of the art simulations [2] requiring ∼ 1010 particles
to be followed for ∼ 106 − 107 time steps, with total memory
requirements going up to ∼1 TB. The solution will undoubt-
edly rely on the use of a (massively) parallel GPU system,
where an ecosystem of CUDA devices operate cooperatively
communicating through some form of interconnect, much like
a distributed memory parallel computer. Our implementation of

684 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 2, FEBRUARY 2011

Fig. 10. Evaluation of performance (y-axis, in nanoseconds per particle) with stride size (x-axis) and particles per thread (Ppc, different lines), for the 1.2-Mpart
run. Each line uses a number of particles per thread (Ppc) which is either a (a) submultiple or (b) multiple of the number of particles per cell.

TABLE IV
PERFORMANCE ESTIMATION FOR SOME PARTS AND FOR THE COMPLETE

PUSHER ALGORITHM. THE SIMULATION USED THE 1.2-Mpart RUN

AND 128 × 128 CELLS RUNNING ON THE TESLA C1060. BASED

ON THE VALUES FROM TABLE III AND THE THEORETICAL

PEAK PERFORMANCE OF 311 GFLOPS

TABLE V
ESTIMATION OF USER INTERACTION PENALTY ON THE 1.2-Mpart RUN

boundary conditions using guard cells, as explained in
Section III-E, is well suited to a spatially decomposed par-
allel version of our algorithm, where each CUDA device is
responsible for a smaller region of the total simulation space.
Each CUDA device would only need to communicate with
neighboring devices sending guard cell values and particles
crossing the device boundary. However, this implies a device-
to-host transfer when sending data to other nodes and a host-
to-device transfer when receiving to be done at every time step,
which may have a negative impact on overall performance. The
detailed analysis of these issues is beyond the scope of this
paper and will be addressed in a future publication.

VII. OVERVIEW AND CONCLUSION

We have implemented a full relativistic 2-D PIC code on a
GPU using C for CUDA. We have validated the implemen-
tation using a well-known benchmark problem of the Weibel
instability in electron–positron plasmas. The code performs

significantly faster on a Tesla C1060 than on a single core
of an Intel Xeon E5420. The main performance bottleneck is
current deposition (approximately 67% of a simulation cycle),
since it involves a scattering operation to global memory. We
were able to avoid serializing this step by implementing a
pseudoatomic add with floats. This implementation can be
extended to include other kinds of atomic operations, as long
as they have a neutral element and are commutative. To avoid
memory access conflicts during the current deposition step,
several strategies were implemented and evaluated. The best
results were obtained with a particle-sorting mechanism and
by ensuring that consecutive threads would deposit current
in different cells. This approached achieved minimal memory
conflicts during current deposition.

We have also added a direct visualization and user interaction
layer to the simulation code. These allow one for more flex-
ibility in using the simulation code and for a better overview
and understanding of the results. The rendering does not slow
the simulation down significantly. However, the time penalty
for user interaction at every time step might be significant. To
overcome that case, we have added the possibility to interac-
tively lower the priority of the interaction layer, so that the user
is able to control the compromise between better performance
or more user interaction.

ACKNOWLEDGMENT

The authors would like to thank the Laboratory of Simu-
lation in Energy and Fluids at Instituto Superior Técnico for
graciously allowing us the use of its visualization workstation.

REFERENCES

[1] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell, “A survey of general-purpose computation
on graphics hardware,” Comput. Graph. Forum, vol. 26, no. 1, pp. 80–113,
Mar. 2007.

[2] R. A. Fonseca, S. F. Martins, L. O. Silva, J. W. Tonge, F. S. Tsung, and
W. B. Mori, “One-to-one direct modeling of experiments and astrophys-
ical scenarios: Pushing the envelope on kinetic plasma simulations,”
Plasma Phys. Control. Fusion, vol. 50, no. 12, p. 124 034, Dec. 2008.

ABREU et al.: PIC CODE IN CUDA-ENABLED HARDWARE WITH DIRECT VISUALIZATION 685

[3] J. M. Dawson, “Particle simulation of plasmas,” Rev. Mod. Phys., vol. 55,
no. 2, pp. 403–447, Apr. 1983.

[4] J. P. Boris, “Relativistic plasma simulation—Optimization of a hybrid
code,” in Proc. 4th Conf. Numer. Simul. Plasmas, 1970, pp. 3–67.

[5] C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation.
Bristol, U.K.: Adam Hilger, 1991.

[6] R. W. Hockney and J. W. Eastwood, Computer Simulation Using
Particles. Bristol, U.K.: Inst. Phys. Publ., 1988.

[7] K. S. Yee, “Numerical solution of initial boundary value problems in-
volving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas
Propag., vol. AP-14, no. 3, pp. 302–307, May 1966.

[8] J. Villasenor and O. Buneman, “Rigorous charge conservation for local
electromagnetic field solvers,” Comput. Phys. Commun., vol. 69, no. 2/3,
pp. 306–316, Mar./Apr. 1992.

[9] T. Z. Esirkepov, “Exact charge conservation scheme for particle-in-
cell simulation with an arbitrary form-factor,” Comput. Phys. Commun.,
vol. 135, no. 2, pp. 144–153, Apr. 2001.

[10] T. Umeda, “A new charge conservation method in electromagnetic
particle-in-cell simulations,” Comput. Phys. Commun., vol. 156, no. 1,
pp. 73–85, Dec. 2003.

[11] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, Mar./Apr.
2008.

[12] C. Sigg and M. Hadwiger, “Fast third-order texture filtering,” in GPU
Gems 2: Programming Techniques for High-Performance Graphics and
General-Purpose Computation. Reading, MA: Addison-Wesley, 2005,
ch. 20, pp. 313–329.

[13] D. Ruijters, B. M. ter Haar Romeny, and P. Suetens, “Efficient GPU-based
texture interpolation using uniform B-splines,” J. Graph. Tools, vol. 13,
no. 4, pp. 61–69, 2008.

[14] G. Stantchev, W. Dorland, and N. Gumerov, “Fast parallel particle-to-grid
interpolation for plasma PIC simulations on the GPU,” J. Parallel Distrib.
Comput., vol. 68, no. 10, pp. 1339–1349, Oct. 2008.

[15] V. Podlozhnyuk, “Histogram calculation in CUDA,” NVIDIA whitepaper,
2007. http://developer.download.nvidia.com/compute/cuda/1_1/Website/
projects/histogram256/doc/histogram.pdf

[16] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting algo-
rithms for manycore GPUs,” in Proc. 23rd IEEE Int. Parallel Distrib.
Process. Symp., May 2009, pp. 1–10.

[17] D. Shreiner, The OpenGL Programming Guide, The Official Guide to
Learning OpenGL. Reading, MA: Addison-Wesley, 2009.

[18] R. A. Fonseca, L. O. Silva, J. W. Tonge, R. G. Hemker, J. M. Dawson,
and W. B. Mori, “Three-dimensional particle-in-cell simulations of the
Weibel instability in electron-positron plasmas,” IEEE Trans. Plasma Sci.,
vol. 30, pt. 1, no. 1, pp. 28–29, Feb. 2002.

[19] R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren,
W. B. Mori, S. Z. Deng, S. Lee, T. C. Katsouleas, and J. C. Adam,
“OSIRIS: A three-dimensional, fully relativistic particle in cell code for
modeling plasma based accelerators,” in Proc. ICCS, vol. 2331, Lecture
Notes Computer Science, 2002, pp. 342–351.

[20] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100X GPU vs. CPU myth: An evaluation
of throughput computing on CPU and GPU,” SIGARCH Comput. Archit.
News, vol. 38, no. 3, pp. 451–460, Jun. 2010.

Paulo Abreu was born in 1968. He received the B.S.
degree in physics engineering from Universidade
Técnica de Lisboa, Lisbon, Portugal, in 1993. He
is currently working toward the Ph.D. degree at the
Institute for Plasmas and Nuclear Fusion at Instituto
Superior Técnico, Lisbon.

His research areas include scientific visualization
and optimizing high-performance scientific codes for
grid environments and for multicore architectures.

Ricardo A. Fonseca was born in Lisbon, Portugal,
on September 11, 1973. He received the degree in
physics engineering and the Ph.D. degree in physics,
on the subject of laser–plasma electron accelerators,
from the Instituto Superior Técnico (IST), Universi-
dade Técnica de Lisboa, Lisbon, in 1996 and 2002,
respectively.

Since 1996, he has been with the Laser and
Plasma Group, IST. In 2000–2001, he was with
the University of California, Los Angeles, where he
worked on the numerical modeling of high-intensity

laser–plasma interactions. He is currrently a Researcher with the Instituto de
Plasmas e Fuso Nuclear, Lisbon. Since 2003, he has also held a permanent
position at the Instituto Superior de Ciências do Trabalho e da Empresa, Lisbon
University Institute, where he is currently an Associate Professor. He has over
65 published papers in leading scientific journals.

Dr. Fonseca was the recipient of the Oscar Buneman award in 2000. He was
a Guest Editor for the IEEE TRANSACTIONS ON PLASMA SCIENCE Special
Issues on Laser and Plasma Accelerator Workshop 2007 and on Numerical
Simulation of Plasmas 2010.

João M. Pereira received the Ph.D. degree in elec-
trical and computer engineering (computer graph-
ics) from Instituto Superior Técnico/Universidade
Técnica de Lisboa (IST/UTL), Lisbon, Portugal, on
December 1996 and the M.Sc. and BsEE degrees in
electrical and computer engineering from IST/UTL,
in 1989 and 1984, respectively.

He is currently an Associate Professor with
the Computer Science Department of UTL, where
he teaches computer graphics. He coordinates the
Distributed Interactive Graphic Systems Research

Group at INESC-ID (Computer Systems Engineering Institute). His main
research fields are real-time rendering, 3-D game programming, serious games,
networked virtual environments, augmented reality, and parallel computer
graphics.

Dr. Pereira won several prizes like the international second prize at the
“1994 MasParChallenge Contest” and the national first prize “Best Graphic
Interactive Demonstrator” in 2004 and 2002, respectively, with the games
“Lost Ages—A Massive Role Playing Game” and “Peace and War Games:
Large Scale Simulation Over the Internet.” He has been involved with several
European and national projects. He was also proposal evaluator of the FET
during 2009. He is author or coauthor of more than 80 peer-reviewed scientific
papers presented at national and international events and journals. He is
member of the Eurographics Association.

Luís O. Silva was born in Lisbon, Portugal, in 1969.
He received the Licenciatura in physics engineering
and the Ph.D. and Habilitation degrees in physics
from Instituto Superior Técnico, Lisbon, Portugal, in
1992, 1997, and 2005, respectively.

He was a Postdoctoral Fellow with the University
of California Los Angeles, from 1997 to 2001. In
2001, he moved to Instituto Superior Técnico, where
he is currently an Associate Professor of physics. He
has held a visiting appointment at the Kavli Institute
for Theoretical Physics and has been awarded the

IBM Scientific Prize 2003, the 2001 Abdus Salam International Center for
Theoretical Physics Medal for Excellence in Nonlinear Plasma Physics by a
Young Researcher, and the Gulbenkian Prize for Young Researchers 1996. His
research interests are on the physics of plasmas under extreme conditions. He
is the author and coauthor of more than 120 journal articles.

Prof. Silva was selected as a Fellow of the Division of Plasma Physics of the
American Physical Society in 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

