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Abstract

A novel way of describing Conditional Random Fields as Recurrent Neural Net-
works has been recently proposed that enables a Fully-Convolutional Neural Net-
work with a Conditional Random Field on top to be jointly trained end-to-end
with gradient descent methods. This algorithm is meant to improve the quality of
semantic segmentation, however, the proposed implementation is only available
for 2D RGB images. In this paper, we generalize the implementation to work with
any number of spatial dimensions and reference channels. Furthermore, we test
our implementation on two different 3D medical imaging datasets and observe that
the performance differences were not statistically significant. We conclude that the
performance increases observed in the 2D RGB case may not translate to these
new domains and present possible explanations for this behaviour.

1 Introduction

Using a fully-connected Conditional Random Field (CRF) [1] after a Fully-Convolutional Neural
Network (FCNN) [2] is one of the state-of-the art approaches in semantic segmentation [3]. The core
idea behind this approach is that the FCNN will serve as a feature extractor that produces a coarse
segmentation which is later refined by the CRF. Unlike a convolution layer which employs local
filters, the CRF looks at every possible pair of pixels in the image, also known as a clique. The CRF
is a graphical model where every clique is defined not only by the spatial distance between pixels but
also by their distance in colour space. This allows the CRF to produce a segmentation with much
sharper edges when compared to only using a FCNN. Recently, it was proposed a way of training
the CRF and FCNN jointly by writing the CRF as a Recurrent Neural Network (RNN) which can be
placed on top of FCNN, allowing the system to be trained end-to-end with gradient descent methods.
We extend this approach to 3D medical images and make our implementation publicly available.

2 Methods

Consider an n-dimensional image with N hyper-voxels (pixels, voxels, etc. . . ) on which we wish
to perform semantic segmentation. We define Xj and Ij to be the label and colour value of hyper-
voxel j, respectively. Consider a random field X defined over a set of variables {X1, X2, . . . , XN}
each taking a value from a set of labels L = {l1, l2, . . . , lk}. Consider another random field I
defined over the variables {I1, I2, . . . , IN} where the domain of each variable is the possible colour
values of a hyper-voxel in the image. A Conditional Random Field (I,X) is characterized by a
Gibbs distribution P (X|I) = 1

Z(I) exp
(
−
∑
c∈CG φc(Xc|I)

)
, where G is a graph on X and each

clique c in the set of cliques CG induces a potential φc. The Gibbs energy of labelling x ∈ LN is
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E(x|I) =
∑
c∈CG φc(Xc|I) and the maximum a posteriori (MAP) labelling of the random field is

x∗ = arg maxx∈LNP (X|I). Z(I) is a normalization constant that ensures P (X|I) is a valid probability
distribution. For notational convenience the conditioning will be omitted from now on, we define
ψc(xc) to denote φc(xc|I).
The Gibbs energy of the fully-connected pairwise CRF is the set of all unary and pairwise potentials
[1]:

E(x) =
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj), (1)

where i and j range from 1 to N . The unary potential ψu(xi) is computed independently for each
hyper-voxel by a classifier. The pairwise potentials are given by:

ψp(xi, xj) = µ(xi, xj)

K∑
m=1

w(m)k(m)(fi, fj), (2)

where k(m) is a Gaussian kernel applied to arbitrary feature vectors fi and fj , w(m) is linear combina-
tion of trainable weights and µ is a compatibility function between labels.

The feature vectors fi and fj can be constructed from any feature space regarding the image. However,
in this setting, they are chosen to take into account positions pi and pj , and the colour values Ii and
Ij of the hyper-voxels in the image:

k(fi, fj) = w(1) exp

(
−|pi − pj |

2

2θ2α
− |Ii − Ij |

2

2θ2β

)
︸ ︷︷ ︸

appearance kernel

+w(2) exp

(
−|pi − pj |

2

2θ2γ

)
︸ ︷︷ ︸

smoothness kernel

. (3)

The parameters θα, θβ and θγ are hyper-parameters that control the importance of the hyper-voxel
difference in a specific feature space. This choice of k(fi, fj) includes both an appearance kernel,
which penalizes different labels for hyper-voxels that are close in space and color value, and a
smoothness kernel which penalizes different labels for hyper-voxels close only in space. The
compatibility function, µ, is a k by k matrix learnt from the data. It has zeros along its diagonal and
trainable weights elsewhere for the model to be able to penalize different pairs of labels differently.

Since the direct computation of P (X) is intractable we use the mean field approximation to compute
the distribution Q(X) that minimizes the KL-divergence D(Q||P ), where Q can be written as a
product of independent marginals, Q(X) =

∏
iQi(Xi). Minimizing the KL-divergence yields the

following iterative inference algorithm:

Algorithm 1: CRF mean field approximation.
Qi(xi) =

1
Zi

exp{−φu(xi)}; Initialize Q
while not converged do

Q̃
(m)
i (l)←

∑
i 6=j k

(m)(fi, fj)Qj(l) for all m; Message passing

Q̂i(xi)←
∑

l∈L µ
(m)(xi, l)

∑
m w(m)Q̃

(m)
i (l); Compatibility transform

Qi(xi)← exp{−ψ(xi)− Q̂i(xi)}; Local update
normalize Q̂i(xi)

end

The key insight of the CRF as RNN paper [4] is that this inference algorithm can be written as
a sequence of steps which can propagate gradient backwards like a RNN. The authors called this
new layer a CRF as RNN layer which can be placed on top of existing FCNN architectures to
improve the quality of semantic segmentation with the advantage of being trainable end-to-end with
gradient descent methods. With the exception of the message passing step, most of these steps can be
easily implemented in any existing deep learning framework. For this choice of kernels, however,
the message passing step from every Xi to Xj requires high-dimensional filtering. A brute force
implementation would have a time complexity of O(N2). Therefore, we use the permutohedral
lattice to approximate high-dimensional filtering [5] in linear time complexity O(N).
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The main contribution of this work is the generalized implementation of the aforementioned algorithm.
Our system works with any number of spatial dimensions and reference image channels as opposed
to only 2D RGB images. Unfortunately, the message passing step which involves high-dimensional
filtering cannot be easily implemented using existing operations. The available implementation
of the permutohedral lattice was designed for 2D RGB images and only used CPU kernels. We
have re-implemented the permutohedral lattice so that the implementation: supports any number
of spatial dimensions and reference image channels; contains not only a CPU C++ kernel but also
as a C++/CUDA kernel for fast computation in GPU; includes a TensorFlow Op wrapper so that
it can be easily used in Python and incorporated in the computational graph. Our code for the
permutohedral lattice (both CPU and GPU) implemented as a TensorFlow operation is available at
https://github.com/MiguelMonteiro/permutohedral_lattice and the code for the CRF
as RNN algorithm is available at https://github.com/MiguelMonteiro/CRFasRNNLayer.

3 Results and Discussion

To test whether using the CRF as RNN layer on top of a FCNN improved the segmentation quality
for 3D medical images, we conducted two experiments. We used the V-Net [6] as the underlying
network architecture for segmentation.

The PROMISE 2012 dataset [7] is a set of 50 three-dimensional mono-modal Magnetic Resonance
Imaging (MRI) prostate images and the respective expert binary segmentation of the prostate. We
re-sampled the images to have isotropic resolution of 1× 1× 2 millimetres. We used 5-fold cross-
validation and measured the performance using the Dice Coefficient (DC). The results for this
experiment were DC = 0.780± 0.110 and DC = 0.767± 0.109 respectively with and without the
CRF as RNN layer.

The Multimodal Brain Tumor Segmentation Challenge 2015 (BraTS 2015) [8] training dataset for
High-Grade Glioma (HGG) is composed of 220 multimodal MRI images of brain tumors. All of the
images have the same size and resolution (1× 1× 1 millimetres), and have 4 different channels (T1,
T1c, T2 and Flair). The expert segmentation has 5 distinct labels: background, oedema, enhancing
tumour core, non-enhancing tumour core and necrotic tumour core. The performance metrics for
this task are: the whole tumour DC (DCWT), which includes everything except the background; and
the core tumour DC (DCCT), which only includes the enhancing, non-enhancing and necrotic cores.
For this experiment, we split the data-set into training and holdout set (85%/15%). The results for
this experiment were DCWT = 0.738± 0.105; DCCT = 0.482± 0.257 and DCWT = 0.735± 0.105;
DCCT = 0.488± 0.244 respectively with and without the CRF as RNN layer.

Looking at the results for both experiments and performing paired t-tests, we can conclude that the
performance difference between using or not the CRF as RNN layer is not statistically significant.
Hence, we conclude that, in these cases, using the CRF as RNN layer on top of a FCNN does not
improve the segmentation quality. The fact that this algorithm seemingly works for 2D RBG images
[4] but not for 3D MRI medical images can be due to a number of factors. Natural images tend to
have much higher contrast and much sharper edges than MRI images. The edges between objects
in natural images tend to be much more well defined (e.g. A building against a blue sky) than in
MRI images (e.g. the oedema in a brain MRI is a slightly different shade of grey than the healthy
region surrounding it). Since MRI images have much less contrast and tend to have blurry edges, the
object of interest often fuses with the background slowly and seamlessly. Trained radiologists can
use their knowledge of human anatomy and pathology in conjunction with the observed image to
infer where the object of interest starts and ends. In contrast, the CRF only has access to differences
between hyper-voxels, and these differences are zero or close to zero in low contrast, blurry edge
environments. This means that there is much more sensitivity to the parameters θα, θβ and θγ .
Setting these parameters becomes very difficult especially when taking into account inter-image
variability observed during training and the large size of the model which makes cross-validation
unfeasible. Furthermore, the regions of interest to be segmented in our experiments were “local”,
both the prostate and brain tumours fit inside the receptive field of the FCNN. This may not be the
case in natural images where we might, for example, want to segment multiple birds out of the sky.
For this reason, it is possible that the FCNN is already able to capture all of the relevant spatial and
colour relations in the image and hence leaves CRF no room to improve.
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