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Abstract
This paper proposes the use of Gaussian random vector fields as a generative model to describe a set of

observed trajectories in a 2-dimensional space. The observed trajectories are sequences of points in space
sampled from continuous trajectories that are assumed to have been generated by an underlying velocity
field. Given the observed velocities connecting the trajectory points, a vector field is obtained by condition-
ing a Gaussian random vector field. Some results obtained in simulation are presented.
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1 Introduction

This paper deals with the estimation of a 2-dimensional vector field describing a set of observed trajectories.
One of the possible applications is to estimate models for moving people, cars, animals, etc. The models can
then be used in surveillance problems to detect abnormal behavior when new observations (trajectories) do not
fit well into the previously estimated models, considered as “normal”.

This kind of problems has been tackled before using a: 1) a parametric approach where a model with a small
number of parameters, e.g. linear dynamical system, is fit to the data; 2) a nonparametric approach where a grid
with a large number of nodes is defined and vectors estimated at those nodes, then the vector field is obtaind by
interpolation of those nodes [Nascimento et al., 2014, Nascimento et al., 2015, Ferreira et al., 2013]; 3) Using
gaussian process regression flow [Kim et al., 2011].

Here we propose the use of random vector fields to model and estimate the underlying vector field gen-
erating the observed trajectory data. The use of the random vector fields provides some advantages over the
nonparametric approach. The random vector field approach replaces the interpolation by conditioning the ran-
dom field by the available data. The random vector field works as a prior and by working uniquely under a
probabilistic setting, all uncertainties are taken into account automatically which is not the case when using
interpolation.

The main contributions are the random vector field proposal and the issues related with the computational
complexity of the algorithm, particularly the replacement of the data by a fixed size statistic that may allow
online application of the framework.

The paper is organized as follows: section 2 provides some background on random fields, section 3 formu-
lates the problem, 3.1 provides a simulation example, section 3.2 proposes ways to deal with complexity and
finally section 4 draws conclusions.

2 Background

A random field is a generalization of a stochastic process where the 1-dimensional “time” parameter is replaced
by n-dimensional space. In the most general setup a random field is defined as a measurable function

T : M £≠!N (1)
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where M and N are manifolds and≠ is a realization space. In this work, we will be dealing with vector valued
random fields in a 2-dimensional image space T : R2 £≠! R2. In this case, for every realization ! 2≠ of the
random vector field we get a real vector field T! :R2 !R2 where T!,T (·,!). Similarly, for every point x 2R2

in the image space we get a random vector Tx :≠!R2 where Tx ,T (x, ·).
A particular example of a random vector field is one where a Gaussian assumption is made. In this case,

the random vector field is completely specified by its mean and covariance functions µ(·) and K (·, ·). The mean
function µ : R2 ! R2 assigns a 2D vector to each point in the 2D image space, while the covariance function
(kernel) is a function K :R2 £R2 !R2£2 such that, given two points in the image space, returns the covariance
matrix that relates the two random vectors at those two points. For example, for any pair of points x1, x2 2 R2,
the random vectors T (x1) and T (x2) are jointly characterized by a multivariable Gaussian distribution

∑

T (x1)
T (x2)

∏

ªN

µ∑

µ(x1)
µ(x2)

∏

,
∑

K (x1, x1) K (x1, x2)
K (x2, x1) K (x2, x2)

∏∂

, (2)

where the mean vector and covariance matrix have dimensions 4£1 and 4£4 respectively.
The previous example generalizes to any finite number of points (x1, . . . , xn). The multivariable Gaussian

distributions obtained this way can be though of as the marginal distributions from an underlying Gaussian ran-
dom vector field, provided the conditions of the Kolmogorov extension theorem are satisfied [Billingsley, 1995].

Considering again the joint distribution (2), if the vector T (x1) = V is observed then the conditional dis-
tribution p(T (x2) | T (x1) = V ) characterizes the prediction T (x2) of the field at the point x2, which is again
Gaussian distributed N (µ§,K §) with mean and covariance given by

µ§ =µ2 +K21K °1
11 (V °µ1), (3)

K § = K22 °K21K °1
11 K12, (4)

where µi ,µ(xi ) and Ki j ,K (xi , x j ). Again, this generalizes to any finite number of points partitioned into two
sets containing observed and unknown vectors. The prediction of the unknown vectors can be performed using
the same equations (3)-(4), where the subscript 1 refers to the observed data and the subscript 2 refers to the
predictive part of the mean and covariance matrix.

For a more in depth introduction to gaussian processes refer to [Rasmussen and Williams, 2006].

3 Problem Formulation

In this paper, a set of observed trajectories is used to estimate a generative model that best fits the data. The
observed trajectories are represented by sequences of points in a 2-dimensional Euclidean space sampled at
regular time intervals.

It is assumed that the trajectories {xt } were generated by flowing along an unknown vector field T (x). The
additive variable wt represents unknown additive perturbations affecting the velocity. Using a normalized time
interval ¢t = 1 between samples, gives the generative model

xt = xt°1 +T (xt°1)+wt . (5)

Given an observed trajectory (x0, x1, . . . , xL), the computed velocities are calculated by the difference vt =
xt+1 ° xt , yielding a set of L position/velocity pairs {(x0, v0), . . . , (xL°1, vL°1)}. In what follows, the collection
of positions and velocities are represented in matrix form as X and T of size L £2, where each row represents
a particular time instant and the two columns represent the horizontal and vertical axis of the 2-dimensional
image space.

To predict the velocities at arbitrary points using the random vector field technique, the desired coordinates
G are appended to the trajectory points X, and the velocities T

§ to be predicted are appended to T to get the
augmented matrices

∑

X

G

∏

and
∑

T

T

§

∏

. (6)
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Then, given a joint probability distribution p(T,T

§), the predicted velocities are then obtained by taking the
conditional distribution p(T

§ | T), as described in section 2. The following assumptions are made to the joint
distribution p(T,T

§):

1. The random vector field has zero mean everywhere, µ(x) =
£

0 0
§

.

2. Given any two points xi and x j , the covariance matrix between their respective velocity vectors is
isotropic in R2 and therefore the covariance matrix is given by ki j I2£2, where ki j ,k(xi , x j ) is a scalar
function that depends only on the chosen points.

This allows covariances to be greatly simplified by using the reduced covariance matrix

K =

2

6

4

k11 · · · k1n
...

...
kn1 · · · knn

3

7

5

(7)

instead of the full matrix, which is given by the Kronecker product K≠ I2£2.

3. The kernel function k(·, ·) used to define the covariance is a positive decreasing function depending on
the distance between the two points.

The previous three assumptions impose a stationarity condition in space. Examples of such functions are
the Ornstein-Uhlenbeck, squared exponential and triangular functions

kou(x1, x2),exp(°Ækx1 °x2k), (8)

kse (x1, x2),exp(°Ækx1 °x2k2), (9)

ktr i (x1, x2),max(1°Ækx1 °x2k,0), (10)

with parameter Æ adjusting the spatial dependency between the points.
Given the observed trajectories X and the grid coordinates G, the covariance matrix is computed in parti-

tioned form as

K =
∑

Kxx Kxg

Kg x Kg g

∏

(11)

where the subscripts x and g denote respectively the part of the observed data and the points of the grid where
prediction is to take place.

The velocity vectors can now be predicted using (3)-(4):

µ§ = Kg x K

°1
xx V (12)

K

§
g g = Kg g °Kg x K

°1
xx Kxg (13)

where the zero mean was dropped from the equations.

3.1 Example

To illustrate the algorithm a trajectory was generated and the prediction was performed on a regularly spaced
21£21 grid using a squared-exponential kernel. Figure 1 shows the observed trajectory in blue. The predicted
velocities at the grid are jointly gaussian with mean µ§ and covariance matrix K

§
g g . The figure shows the

marginals distributions for individual points, with the mean represented by green arrows and the variances
obtained from the diagonal of K

§
g g represented by the background gray level in log-scale, darker meaning

higher variance/uncertainty in the prediction.
It can be seen that the nodes near the trajectory have much lower uncertainty in the predicted velocity than

nodes in areas where no nearby data exists. The darker areas tend to give a result close to the prior, assigning
near zero velocity.
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(a) Single trajectory of length 70. (b) Single trajectory of length 100. (c) Two noisy trajectories with dif-
ferent lengths.

Figure 1: Observed trajectories (blue) and random field prediction at a regularly space grid (yellow). The gray
background represents the uncertainty associated with the prediction.

Although a crossing exists in the trajectory, which is impossible in a deterministic dynamical system, the
solution found can be interpreted as two separate upper and lower regions with circular motion. The crossing
is then explained by the stochastic nature of the problem where a perturbation can produce the jump from one
region to the other.

3.2 Dealing with complexity

A practical problem of directly applying the equations (12)-(13) is dealing with variable size and always in-
creasing amount of data. A suboptimal solution to this problem is to use the predicted vectors at the grid as a
fixed size statistic that describes the past observed data. As new observations are obtained the statistic can then
be updated and the data discarded.

To implement a fixed size statistic, a fixed size grid is used. The algorithm now works in two steps: in the
first step the grid vectors are estimated and in the second step the vector field is predicted from the grid, which
now acts as a new “virtual” data, instead of the original trajectory.

As a further reduction in complexity, the grid nodes with high uncertainty can be omited and the prediction
can be performed using only smaller but relevant information. Figure 2 shows three fields generated from
subsets of nodes from solution in figure 1.

This solution is clearly suboptimal since information is being retained in areas where an already good
description exists and new contributions are small. A possibly better approach would be to keep the nodes that
lead to the largest information gain. This line of research is still ongoing.

4 Conclusions

This paper deals with the use Gaussian vector random fields to build models describing a set of trajectories
observed in 2-dimensional space. The use of the random vector field framework has the main advantage that
all the uncertainties are being taken into account. The random vector field can be seen as providing a prior, that
when constrained on the data provides prediction for the rest of the space. Regions where no data is observed
are then closer to the prior and have higher associated uncertainty.

Constraining on all available data has the drawback that, in an online setting, the complexity is always
increasing. Here we propose to replace the data by a fixed size statistic that is then updated online. The size
of this statistic is experimented with by selecting only the nodes with lower uncertainty. While this is not an
optimal solution, it provides a first step in the pursuit of a sparse solution that keeps the complexity of the
algorithm sufficiently low to be able to run it online.
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Figure 2: Observed trajectory (blue) and random field prediction at a regularly space grid (yellow). The gray
background represents the uncertainty associated with the prediction.
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