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Abstract— This paper explores a control architecture for a
solar furnace that uses active cooling to improve the temper-
ature reference tracking during the decreasing phase of the
reference. This is done in conjunction with the command of the
shutter that adjusts the incident power and compensates sun
power variability due to weather conditions. The controller uses
exact linerization coupled with a PI controller to handle model
parameter uncertainty. Off-line identification is employed to
characterize the temperature dynamics, this is used to avoid
online adaptation mechanisms that may cause stability prob-
lems during the controller startup, that may melt the material
sample. Experimental results obtained from the plant in closed
loop control using active cooling are presented.

Index Terms— Solar Furnace, Non-linear Dynamics, Off-line
Identification, Active Cooling.

I. INTRODUCTION

The study of material aging processes is usually carry
out using temperature cycling stress tests. In this research
field, solar furnaces are used to apply concentrated solar
energy on samples to obtain high temperature stress tests.
The PROMES Solar Energy Laboratory at Odeillo, southern
France (fig. 1), and the Plataforma Solar de Almeria (south-
ern Spain) [1], are two sites where concentrated solar energy
are used in several applications such as to develop material
stress tests.

In this process the temperature dynamics is nonlinear,
since it depends on the fourth power temperature term and on
the nonlinear static function of the shutter, that is employed
to adjust the incident power. Depending on the purpose
of the experiment, a temperature reference is selected and
must be followed with accuracy. From previous studies, the
tracking of a decreasing reference using only the shutter
aperture may not be adequate because the natural power
losses by convection and by radiation are not adequate. In
this situation, when the shutter is closed, active cooling must
be employed.

A solar furnace comprises a heliostat that tracks the sun
and guides the solar energy to a parabolic mirror that concen-
trates energy on a focus. The energy applied on the material
sample is adjusted by commanding the shutter aperture.
Figure 2 shows the 900W solar furnace at PROMES used
in the tests with a SiC sample at the testing table on the
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Fig. 1. PROMES laboratory at Odeillo, southern France, showing the 1MW
parabolic mirror (north part of the building ) and the heliostat field. Smaller
size solar furnaces are located in the building at its southern part.

Fig. 2. Visualization the 900W solar furnace at PROMES with a SiC
sample on the testing table. The air flow nozzle for active cooling is above
(away) the sample. The sun light is guided by a heliostat at the ground level
to the parabolic mirror that concentrates the light. A pyrometer located near
the parabolic mirror measures the temperature of the sample.

focus. Light strips on the parabolic mirror depend on the
shutter aperture. The air flow nozzle for active cooling is
above (away) the sample.

The temperature dynamics of a sample has a nonlinear be-
havior [1], depends on the material properties, on the sample
size, on the power losses by radiation and by convection and
on the energy absorption.

Uncertainty on the material thermodynamic properties and
the energy transfer between the sample and the environment
affect the characterization of the temperature model. Solar
power fluctuations induced by the presence of clouds, if not
compensated, also affect the operation of the solar furnaces
and the results of temperature stress experiments.
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Fig. 3. Control system architecture for the solar furnace. The temperature
controller generates a reference power value for the inner controller. The
inner controller compensates the nonlinear static function of the shutter and
the variability of the sun power.

Several works were developed to address the temperature
control in solar furnaces as [1]. The nonlinear model is
linearized and a linear model is identified that depends on
the temperature level.

An enhanced temperature control architecture was pro-
posed in [2], the aim being to explore a cascade control
architecture with two loops to decouple the shutter nonlin-
earity from the temperature dynamics. In [3] a predictive
adaptive controller was used in parallel with a PI controller
to control the temperature of the sample. The aim was to
use the adaptive controller to improve the performance in
situations where the PI controller was not well tuned. In this
approach however, the online adaptation may cause stability
problems. In [4] optimal control is evaluated in the control
of a solar furnace.

In this paper the parameters of the nonlinear model are
identified offline to avoid the identification of several local
linear models, an approach first evaluated in [5]. Distur-
bance rejection in solar furnaces is handle in [6], feedback
linearization with GPC control applied to solar furnaces is
explored in [7] and [8]. In [9] predictive control with integral
action was applied to a solar furnace at PROMES with
success using off-line identification.

In this framework, off-line model identification is em-
ployed to characterize the temperature dynamics. The model
identified includes the contribution of the losses by convec-
tion and by radiation and the incident power that is regulated
by the shutter. The effect of active cooling can be modelled
with a term that is similar to the term that represents losses
by natural convection. But in the present work active cooling
is considered as a disturbance, meaning that it must be
compensated by adjusting the incident power. The control
system architecture is illustrated in the figure 3, where the
temperature controller generates a reference power value for
the inner controller. The inner controller controls the aperture
of the shutter, compensates the nonlinear static function of
the shutter and the variability of the sun power.

From the results obtained, it is concluded that the approach
followed can be applied in practice to improve the operation
of solar furnaces.

This paper is organized as follows, after this introduction,
section II describes the model of a solar furnace. Section III
describes the methodology used to off-line model identifica-
tion using data collected from the process. The control law

using exact linearization coupled with a PI is described in the
section IV. The results obtained from the the plant operating
in closed loop with the application of active cooling are
presented in section V. The conclusion are presented in the
last section.

II. SOLAR FURNACE MODEL

The solar furnace model comprises two dynamic models:
a dynamic model that describes the interactions between the
concentrated solar energy and the temperature of the sample,
and the model that describes the behaviour of the shutter.
These models are presented hereafter.

A. Shutter model

The shutter operates in closed loop using a servo mech-
anism. The shutter has a dynamics much faster than the
thermal model subsystem, and therefore only the static
function of the shutter is considered,

sfs(us(t)) = 1−
cos(θ0 + us(t)(90

◦ − θ0)/100)

cos(θ0)
(1)

with the shutter command being limited to, 0 ≤ us(t) ≤ 100
and θ0 = 25◦. The controller of the shutter is able to move
the blades to the target angle in less than 0.2s.

B. Temperature model of the sample

An energy balance is used to model the temperature of
the sample, such as the one made in [1]. The samples can
have different shapes and sizes, but a circular shape with a
diameter of 2cm and a height of 2mm can be considered
a typical sample size. The temperature of the sample, Ts(t)
[K] is described (approximated) by

dTs(t)

dt
= −α1[T

4
s (t)− T 4

b (t)]− α2[Ts(t)− Te(t)] (2)

−Acool(t) + α3Gs(t)sfs(us(t)) .

Tb [K] represents the temperature of the ”enviroment” that
contributes to losses by radiation and Te represents the
temperature of the surrounding air that contributes to losses
by convection. The factors α1 , α2 and α3 represent the
process parameters, they are defined by

α1 =
ǫ(Ts)σAsr

Cp(Ts)m
; α2 =

hconv(Ts, Te)Asc

Cp(Ts)m
; α3 =

αsAsigf

Cp(Ts)m
.

(3)
and are identified using data collected from the process

as shown in in fig. 4 (SiC sample) and in fig. 5 (Stainless
Steel sample), where the shutter was commanded manually
to change the temperature. The term Acool(t) represents the
effect of active cooling using air flow that is calibrated
by selecting a constant air pressure. The Acool(t) term is
considered as a disturbance that the temperature controller
acting on the shutter aperture must compensate, if needed.

In order to perform the process identification, Gs(.) (avail-
able sun power) is recorded and the active cooling (Acool(t))
is not applied.

The parameters in (3) are described in Table I.
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TABLE I

THERMAL MODEL PARAMETERS

Parameter : Description

ρ [kgm−3] : Density of the material
Cp [Jkg−1K−1] : Material Specific Heat
m [kg] : Mass of the sample
ǫ : Emissivity of the material
σ [Wm−2K−4] : Stefan-Boltzmann const.
Asr [m2] : Sample’s loss radiation area
Asc [m2] : Sample’s convection area
Asi [m2] : Sample’s incident area
Lc [m]: Characteristic length
hconv [Wm−2K−1] : Convection factor
αs : Sample’s solar absorption factor
gf : Furnace gain
Gs [W/m2] : Max. Solar Flux
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Fig. 4. Data collected from the solar furnace with a SiC sample, by
manually adjusting the shutter. The material sample temperature is shown
at the top and the manipulated variable is shown at the bottom. The solar
power was almost constant during the experiment (900W/m2).

III. OFF-LINE IDENTIFICATION OF THE TEMPERATURE

MODEL

If a new material must be tested, there is an initial lack
of information about its thermal properties (Cp, ǫ, αs are
unknown), and the parameters α1, α2 and α3 that enter
in equation of the temperature cannot be computed. As
a consequence, if a first controller is used to track the
temperature reference profile with a small error, then there
is a risk that the sample will be melt due to temperature
overshoots.

To solve the problem, data from the process, for temper-
atures below the material melting point, must be collected.
This can be done by performing open loop tests, where the
shutter is adjusted by an human operator or, a proportional
controller can be used. In this case the human operator can
adjust the controller gain by ”small increments”.

In order to identify the model parameters it is assumed that
α1, α2 and α3 are constant. Sampled data is used but the
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Fig. 5. Data collected from the solar furnace with a stainless steel sample,
by manually adjusting the shutter. The material sample temperature is shown
at the top and the manipulated variable is shown at the bottom. The solar
power was almost constant during the experiment (950W/m2).

noise generated by computing the numerical time derivative
of Ts(.) must be attenuated. To tackle above the problem,
the following signals are defined, ζ1(t) = [T 4

s (t) − T 4
e (t)],

ζ2(t) = [Ts(t)−Te(t)] and ζ3(t) = ur(t) = Gs(t)sfs(us(t))
and a stable low-pass filter O(s) = a/(s + a) with unitary
static gain is applied to eq. (2), yielding

as

(s+ a)
Ts(s) = −α1

aζ1(s)

(s+ a)
− α2

aζ2(s)

(s+ a)
+ α3

aζ3(s)

(s+ a)
.

(4)
Parameter a > 0 is selected based on the level of noise

present on Ts(.) and also on the dynamics of the process.
The general rule is to select the filter to be much faster
than the temperature dynamics. It follows that (4) admits
the continuous time representation,

ζf0(t) = −α1ζf1(t)− α2ζf2(t) + α3ζf3(t) (5)

with

ζf0(t) = a(Ts(t)− Tsf(t)) (6)
dTsf (t)

dt
= −aTsf (t) + aTs(t) (7)

dζf1(t)

dt
= −aζf1(t) + aζ1(t) (8)

dζf2(t)

dt
= −aζf2(t) + aζ2(t) (9)

dζf3(t)

dt
= −aζf3(t) + aζ3(t) . (10)

In order to solve these dynamic equations in discrete time,
the first order hold (FOH) method is applied using the
sampling time h = 0.5s. The estimation of parameters α1 ,
α2 and α3 are computed using the Least Mean Square (LMS)
method with discrete time signals ζf0[t], ζf1[t], ζf2[t], ζf3[t].

Considering (5) and the data at each time sample, it
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Fig. 6. Off-line model identification of a SiC sample, data from fig.(4). The
sample temperature Ts(t) (blue colour) and the one-step ahead prediction
are very similar. The model output with the initial state set to Ts[2500]
is shown in green colour. In both cases model output gives a good
approximation of the process dynamics.

follows that,
[

y[t]
y[t − h]

. . .

y[t − nh]

]

=

[

ζf1[t] ζf2[t] ζf3[t]
ζf1[t − h] ζf2[t − h] ζf3[t − h]

. . . . . . . . .

ζf1[t − nh] ζf2[t − nh] ζf3[t − nh]

]

[

α1

α2

α3

]

,

(11)

that can be represented by Y = Φα . The parameters are
obtained from

α = (ΦTΦ)−1ΦY (12)

if the matrix ΦTΦ has inverse, this can be obtained using
an excitation signal that has an adequate spectrum. In this
work input steps are used. Note that in the present problem
there is a huge difference between the values of ζf1[t] ζf2[t]
ζf3[t], that are related to T 4(.), T (.), and Gs(t)sfs(us(t)).
This can cause numerical problems. To mitigate this problem
the matrix Φ must be scaled by a diagonal matrix such that
Y = ΦΛαL, with αL = Λ−1α.

The results of the off-line identification corresponding to
a time window of fig. 4 are shown on fig. 6 where the
sample temperature Ts(t) (blue colour) and the one-step
ahead prediction are very similar. The model output with the
initial state set to Ts[400] is shown in green colour. In both
cases model output are good approximations of the process
dynamics.

The scaling matrix was selected as diag(Λ) = [2.0 ×

10−11 , 1.0×10−2 , 1.0×10−1], the estimates of ᾱ1, ᾱ2 and
ᾱ3 are respectively, 3.213×10−12, 4.5×10−2, 3.20×10−2.

Other important aspect that is provided by the model, is
the quantification of the relation between the energy loss
by radiation described by the term ᾱ1[T

4
s (t) − T 4

e (t)], that
is nonlinear, and the term corresponding to energy loss by
convection ᾱ2[Ts(t) − Te(t)], that has a linear contribution
to the temperature dynamics. The comparison is presented
on fig. 7, from which it can be concluded that the nonlinear
term dominates for temperatures higher than 1000K . Below
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Fig. 7. Comparing the contribution of each term of temperature model
dynamics in the SiC sample. LoC - Loss by Convection, LoR - Loss by
Radiation, PoS - Power absorption
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Fig. 8. Off-line model identification. Sample temperature Ts(t) (blue
colour) and the one-step ahead prediction are very similar. The model output
with the initial state set to Ts[400] is shown in green colour. In both cases
model output gives a good approximation of the process dynamics.

this temperature value the energy loss by convection have a
bigger contribution to the temperature dynamics.

The off-line model identification results of the stainless
steel sample are shown in the figures fig. 8 and 9 where
the the parameter estimates ᾱ1, ᾱ2 and ᾱ3 are respectively,
1.590× 10−11, 1.581× 10−2, 2.608× 10−1.

IV. CONTROL LAW DESIGN

The proposed approach to design a controller is based
on the definition of a virtual control input ur(t) such that
ur(t) = Gs(t)sfs(us(t)). The aim is to impose ur(.) and
to invert the nonlinearity such that us(.) is computed and
applied to the process input, note that sfs() is known and
Gs(t) is measured. Additionally, the proposed control will
be based on the concept of exact linearization.
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Fig. 9. Comparing the contribution of each term of temperature model
dynamics. LoC - Loss by Convection, LoR - Loss by Radiation, PoS -
Power absorption

Define
es(t)

∆
= TR(t)− Ts(t) , (13)

where TR(t) represents the temperature reference and define
the tracking error dynamics ės(t)

∆
= ṪR(t)− Ṫs(t), that can

be written as

ės(t) = ṪR(t) + α1[(TR(t)− es(t))
4
− T 4

e (t)]

+ α2[TR(t)− es(t)− Te(t)]− α3ur(t) . (14)

Expanding the nonlinear term (TR(t)− es(t))
4 as T 4

R(t)−
4T 3

R(t)es(t)+6T 2
R(t)e

2
s(t)−4TR(t)e

3
s(t)+e4(t) and assum-

ing that es(t) is small enough such that (TR(t)− es(t))
4 ≈

T 4
R(t)− 4T 3

R(t)es(t), then (14) can be approximated by

ės(t) = −[α14T
3
R(t) + α2]es(t) + ṪR(t) + α1[T

4
R(t)− T 4

e (t)]

+ α2[TR(t)− Te(t)]− α3ur(t) . (15)

Having the estimates α̂i of the process parameters αi and
estimates of the error bounds, such that αi = α̂i +∆αi, the
control signal is defined as ur(t) = ur(t) + δr(t) with

ur(t) =
Ṫr + α̂1(T

4
R(t)− T 4

0 ) + α̂2(TR(t)− Te)

α̂3
. (16)

where the term ur(t) is used to cancel the nonlinear thermal
dynamics. The dynamics of the tracking error can now be
written as

ės(t) =
∆α3

α̂3
ṪR(t) + (∆α1 + α̂1

∆α3

α̂3
)(T 4

s (t)− T 4
e (t))+

(17)

+(∆α2 + α̂2
∆α3

α̂3
)(Ts(t)− Te(t))− α3δr(t) .

The input δr(t) is used to compensate small parameter
errors. Defining δr() = Kl/α̂3(es(t) + Kp

∫

(es(τ)dτ) and
considering that the ∆αi are small, the dynamics of the
tracking error can be written as

ės(t) = −
α3

α̂3
Kl(es(t) +Ki

∫ t

0

(es(τ)dτ) . (18)
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Fig. 10. Exp1: Temperature control of a SiC sample with the exact
linearization coupled with a PI controller. During this experiment the sun
power was almost constant Gs(.) ≈ 925W/m2 .

The parameters of the PI controller can now be selected
such the the dynamics of the tracking error (18) is stable.
Note that the terms of (17) that depend on ∆αi can be
evaluated for the temperature reference profile and bounds
can be computed and used to evaluate the robustness of the
controller. A possible algorithm to select the PI controller
parameters is to imposed a real double pole on the tracking
error dynamics, where Ki = 0.25 ∗ Kl. A discrete time
version of the controller equations is implemented with a
small sampling time compared with the time constant of
the process. That provides a good approximation of the
continuous time controller.

V. PRACTICAL EVALUATION OF THE CONTROL LAW

Figure 10 shows the results obtained during an experiment
using the exact linearization with the PI controller. The PI
controller gains are Kl = 0.2 and Ki = 0.05. The sun power
was almost constant Gs(.) ≈ 925W/m2.

From fig. 10, it can be concluded that a good temper-
ature tracking is obtained when the temperature reference
increases or during time intervals where the reference signal
is constant. But when the reference decreases, energy loss
by radiation and by natural convection do not allow a good
tracking, the rate of energy loss is not adequate. To address
this situation, active cooling (air flow - forced convection) is
employed to decrease the temperature of the sample. This is
presented in the fig. 11, where the air flow is applied from
the beginning of the experiment and the Gs(t) ≈ 900W/m2.

This action can be considered as a disturbance that the
controller compensates by selecting an higher shutter aper-
ture to apply more power on the sample that compensated
the cooling action of the air flow.

An alternative approach is to apply the cooling action
when if fact is needed, that is, during the temperature
reference decrease. This is illustrated in fig. 12, where a
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Fig. 11. Exp2: Using active cooling (air flow) from the beginning of the
experiment to improve the temperature tracking during the decrease of the
reference (Gs(.) ≈ 900W/m2).
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Fig. 12. Exp3: Using active cooling (air flow), to improve the reference
temperature tracking, of a stainless steel sample, during the second, fourth
and fifth reference cycles (reference decrease).

stainless steel sample was used. The model parameters were
obtained from the data presented in fig. 5. The active cooling
(air flow) is applied during the second, fourth and fifth
reference cycles (reference decrease) and that improves the
temperature reference tracking.

In this case the sun power has a lower value and is
not constant, fig. 13, but its effect is compensated by the
controller, that has the gains Kl = 0.5 and Ki = 0.125.

VI. CONCLUSION

This paper describes the design of a control system for
solar furnaces to perform cycling temperature stress tests.

The process dynamics accounts for the contribution of
losses by radiation and by convection and solar energy
absorption. Data collected from the process is used with
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Fig. 13. Exp3: Sun power during experiment 3 corresponding to the results
shown in fig.(12).

an off-line model identification method to characterize the
temperature dynamics. This methodology avoids the use of
online adaptation mechanisms that may cause stability prob-
lems during stress test. The control methodology is based
on the exact linearization coupled with a PI to compensate
model parameter uncertainty. Experiment test results show
that the proposed methodology with active cooling improves
the temperature reference tracking.
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