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Abstract:

Solar furnaces are devices employed in high temperature material stress tests that use
concentrated solar energy. This process has a nonlinear dynamics caused by a fourth power
temperature term and by the nonlinear behavior of the shutter. Sun power variability due to
weather conditions may affect the operation of a solar furnace if it is not compensated by
adjusting the shutter aperture. The contribution of this paper is to explore and to evaluate
the application of model predictive control with integral action to a nonlinear process. Off-line
identification is employed to characterize the temperature dynamics. This methodology avoids
the use of online adaptation mechanisms that may cause stability problems during temperature
stress tests that may melt the material sample. The aim is to design a controller with a good
performance, able to track the temperature cycling profile without overshooting to avoid melting
the material sample. Active cooling is also explored to improve the temperature tracking during
the decrease of the temperature profile. Experimental results obtained from the closed loop
control of the plant are presented.

Keywords: Solar Furnace, Non-linear Dynamics, Off-line Identification, Incremental Model
Predictive Control.

Fig. 1. PROMES laboratory at Odeillo, southern France,
with the 1MW parabolic mirror. Smaller size solar
furnaces are located at the southern part of the
building.

1. INTRODUCTION

The PROMES Solar Energy Laboratory at Odeillo, south-
ern France (fig. 1) and the Plataforma Solar de Almeria
(southern Spain) Berenguel et al. (1999) are two sites
that use concentrated solar energy to develop solar energy
applications, such as material stress tests.

⋆ This work was developed under the european project SFERA2 and
the program UID/CEC/50021/2013.

Fig. 2. Visualization of the focus of the 900W solar furnace
at PROMES with water spray.

Solar furnaces are devices that concentrate solar energy,
that may be used to characterize the behaviour of mate-
rials using temperature (or power) cycling stress tests. A
solar furnace comprises an heliostat that tracks the sun
and guides the solar energy to a parabolic mirror that
concentrates energy on a focus. The energy applied on the
material sample is adjusted by commanding the shutter
aperture. Figure 2 shows the focus of the 900W solar
furnace at PROMES using a water spray. The size of the
light strips depend on the shutter aperture.

The temperature dynamics of a sample has a nonlinear
behavior that depends on its size, the material properties,
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the power losses by radiation and by convection, and the
energy absorption.

Uncertainty on the material thermodynamic properties,
the balance of energy, and the aperture of the shutter
that has a nonlinear effect on the amount of incident
energy on the sample affect process dynamics. Solar power
fluctuations induced by the presence of clouds, if not
compensated, affect the operation of the solar furnaces and
the results of temperature stress experiments.

An enhanced temperature control architecture was pro-
posed in Costa and Lemos (2009) where the aim was to
explore a cascade control architecture with two loops to
decouple the shutter nonlinearity from the temperature
dynamics. In Costa and Lemos (2012) a predictive adap-
tive controller was used in parallel with a PI controller
to control the temperature of the sample. The aim was
to use the adaptive controller to improve the performance
in situations where the PI controller was not well tuned.
However, in this approach the use of online adaptation
may cause stability problems.

An alternative approach based on a PI controller with
exact linearization proposed in Costa and Lemos (2014a)
was tested experimentally showing good results Costa
and Lemos (2016). In Costa and Lemos (2014b) optimal
control is evaluated to control a solar furnace. Comparing
the results obtained with the PI controller with exact
linearization and with the MPC with integral action, it
can be concluded that the reference tracking is similar but
the MPC provides a smoother control action.

In this paper the proposed control law is obtained by
following similar steps as in other predictive controllers,
such as, the GPC Clarke et al. (1987) but with the lin-
ear model being obtained by on-line linearization around
the reference. Process output predictors are employed to
minimize a cost function that weights the tracking error
and the control increments (integral action). In this case
the process has a nonlinear dynamics. A Taylor expan-
sion is used to approximate the process dynamics around
the reference. This causes the output predictors to have
parameters that depend on future values of the reference.

Two adjustable parameters, the number of predictors
and the weight on the control action, are used to select
the controller gains. In this framework off-line model
identification is employed to characterize the temperature
dynamics. The identified model includes the contribution
of the losses by convection and by radiation.

From the results obtained it is concluded that the weight
on the control action is the most important parameter that
affect the performance of the closed-loop process.

2. SOLAR FURNACE MODEL

The solar furnace model comprises two dynamic models:
a dynamic model that describes the interactions between
the concentrated solar energy and the temperature of the
sample, and the model that describes the behaviour of the
shutter. These models are presented hereafter.

Table 1. Thermal model parameters

Parameter : Description

ρ [kgm−3] : Density of the material

Cp [Jkg−1K−1] : Material Specific Heat

m [kg] : Mass of the sample

ǫ : Emissivity of the material

σ [Wm−2K−4] : Stefan-Boltzmann const.

Asr [m2] : Sample’s loss radiation area

Asc [m2] : Sample’s convection area

Asi [m2] : Sample’s incident area

Lc [m]: Characteristic length

hconv [Wm−2K−1] : Convection factor

αs : Sample’s solar absorption factor

gf : Furnace gain

Gs [W/m2] : Max. Solar Flux

2.1 Shutter model

The shutter operates in closed loop using a servo mecha-
nism. The shutter has a dynamics that is much faster than
the thermal model subsystem, and thus only the static
function of the shutter is considered,

sfs(us(t)) = 1−
cos(θ0 + us(t)(90

◦ − θ0)/100)

cos(θ0)
, (1)

with the shutter command being limited to, 0 ≤ us(t) ≤

100 and θ0 = 25◦. The controller of the shutter is able to
move the blades to the target angle in less than 0.2s.

2.2 Temperature model of the sample

An energy balance is used to model the temperature of the
sample, such as the one made in Berenguel et al. (1999).
The samples can have different shapes and sizes, but a
circular shape with a diameter of 2cm and a height of 2mm
can be considered a typical sample size. The temperature
of the sample, Ts(t) [K] is described (approximated) by

dTs(t)

dt
= −α1[T

4
s (t)− T 4

b (t)]− α2[Ts(t)− Te(t)] (2)

+α3Gs(t)sfs(us(t)) .

Tb [K] represents the temperature of the ”environment”
that contributes to losses by radiation and Te represents
the temperature of the surrounding air that contributes to
losses by convection. The factors α1 , α2 and α3 represent
the process parameters, being defined by

α1 =
ǫ(Ts)σAsr

Cp(Ts)m
; α2 =

hconv(Ts, Te)Asc

Cp(Ts)m
; α3 =

αsAsigf

Cp(Ts)m
. (3)

These parameters are estimated using data collected from
the process as shown in fig. 3, where the shutter was
commanded manually do change the temperature of a
stainless steel sample. In order to perform the process
identification Gs(.) (available sun power) is also recorded.

The parameters in 3 are described in Table 1.

3. OFF-LINE IDENTIFICATION OF THE
TEMPERATURE MODEL

From the literature it can be concluded that parameters
α1 , α2 and α3 depend on temperature on a small degree
for a large set of materials. Thus they can be assumed to
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Fig. 3. Data collected from the solar furnace by manually
adjusting the shutter. The material sample tempera-
ture is shown at the top and the manipulated variable
is shown at the bottom. The solar power was almost
constant during the experiment (950W/m2).

be constant. This assumption can be validated during the
identification process.

In order to estimate the parameters, sample data is used.
The continuous time model is filtered by a first order filter
followed by a conversion to a discrete time model. Hence,
the following signals are defined, ζ1(t) = [T 4

s (t) − T 4
e (t)],

ζ2(t) = [Ts(t)−Te(t)] and ζ3(t) = ur(t) = Gs(t)sfs(us(t)),
and a stable low-pass filter O(s) = a/(s+ a) with unitary
static gain is applied to (2), yielding

as

(s+ a)
Ts(s) = −α1

aζ1(s)

(s+ a)
− α2

aζ2(s)

(s+ a)
+ α3

aζ3(s)

(s+ a)
. (4)

The value of parameter a > 0 is selected based on the
level of noise present on Ts(.) and on the dynamics of the
process. The general rule is to select the filter to be much
faster than the temperature dynamics. It follows that (4)
admits the continuous time representation,

ζf0(t) = −α1ζf1(t)− α2ζf2(t) + α3ζf3(t) (5)

with

ζf0(t) = a(Ts(t)− Tsf(t)) (6)

dTsf (t)

dt
=−aTsf (t) + aTs(t) (7)

dζf1(t)

dt
=−aζf1(t) + aζ1(t) (8)

dζf2(t)

dt
=−aζf2(t) + aζ2(t) (9)

dζf3(t)

dt
=−aζf3(t) + aζ3(t) . (10)

In order to solve these dynamic equations in discrete time,
the first order hold (FOH) method is applied using the
sampling time h = 0.5s. The estimation of parameters
α1 , α2 and α3 are computed with the Least Mean Square
(LMS) method using the discrete time signals ζf0[t], ζf1[t],
ζf2[t], ζf3[t].
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Fig. 4. Off-line model identification. Sample temperature
Ts(t) (blue colour) and the one-step ahead prediction
are very similar. The model output with the initial
state set to Ts[400] is shown in green colour. In both
cases model output gives a good approximation of the
process dynamics.

Considering eq. (5 ) and the data at each time sample, it
follows that




y[t]

y[t − h]

. . .

y[t − nh]



 =





ζf1[t] ζf2[t] ζf3[t]

ζf1[t − h] ζf2[t − h] ζf3[t − h]

. . . . . . . . .

ζf1[t − nh] ζf2[t − nh] ζf3[t − nh]





[

α1

α2

α3

]

, (11)

that can be represented as Y = Φα . The parameters are
obtained from

α = (ΦTΦ)−1ΦY (12)

where the matrix ΦTΦ must have inverse. The validity
of this assumption depends on the spectrum content of
the control signal that must be ”rich”. In the present
work, the shutter is operated by steps to evaluate the
time response of the (material sample) temperature. Note
that, in the present problem, there is a huge difference
between the values of ζf1[t] ζf2[t] ζf3[t], that depend on
T 4(.), T (.) and Gs(t)sfs(us(t)). A fact that may cause
numerical problems. To solve this problem, the matrix Φ
is scaled by a diagonal matrix such that Y = ΦΛαL, with
αL = Λ−1α.

The results of the off-line identification corresponding to
a time window of fig. 3 are shown on fig. 4, where the
sample temperature Ts(t) (blue colour) and the one-step
ahead prediction are very similar. The model output with
the initial state set to Ts[400] is shown in green colour. In
both cases the model outputs are good approximations of
the process dynamics.

The scaling matrix was selected as diag(Λ) = [2.0 ×

10−11, 1.0×10−2, 1.0×10−1], the estimates of ᾱ1, ᾱ2 and ᾱ3

are respectively, 1.590×10−11, 1.581×10−2, 2.608×10−1.

An important aspect that the model can provide is the
quantification of the relation between the energy loss by
radiation described by the term ᾱ1[T

4
s (t) − T 4

e (t)] that is
nonlinear, and the term corresponding to energy loss by
convection ᾱ2[Ts(t)−Te(t)], that has a linear contribution
to the temperature dynamics. The comparison is presented
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Fig. 5. Comparing the contribution of each term of tem-
perature model dynamics. LoC - Loss by Convection,
LoR - Loss by Radiation, PoS - Power absorption

on fig. 5, from which it can be concluded that the nonlinear
term dominates for temperatures higher than 900K. Below
this temperature value the energy loss by convection have
a bigger contribution to the temperature dynamics.

4. CONTROL LAW DESIGN

The control law is design based on the minimization of the
cost function

J(N) =

N
∑

j=1

[(Ts(k + j)− TR(k + j))2 + ρ(∆u(t + j − 1))2] (13)

where N defines the control horizon corresponding to the
time window N ∗ h, with h being the sampling interval.
TR(.) represents the future temperature profile, Ts(.) rep-
resents the output of the process to be controlled, and
ρ > 0 is an adjustable parameter that weights the future
incremental control actions ∆u(.).

In order to compute the predictors that relate the process
output Ts(.) with the control increment ∆u(.) one consid-
ers the discrete time version of (2)

Ts(k + 1) = Ts(k)− hᾱ1[T
4
s (k)− T 4

e (k)] (14)

−hᾱ2[Ts(k)− Te(k)] + hᾱ3u(k) ,

where u(k) = Gs(k)sfs(us(k)).

Considering now (14) at time k and computing ∆Ts(k +
1) = Ts(k+1)−Ts(k), an incremental model of the process
is obtained,

∆Ts(k + 1) = ∆Ts(k)− hᾱ1[T
4
s (k)− T 4

s (k − 1)] (15)

−hᾱ2∆Ts(k) + hᾱ3∆u(k) .

where the nonlinear term T 4
s (k) − T 4

s (k − 1) can be
approximated by a Taylor expansion

T 4
s (k)− T 4

s (k − 1) ≃ 4T 3
s (k − 1)∆Ts(k) .

Assuming that the tracking error is small, the term T 3
s (k−

1) can be replaced by the reference T 3
R(k − 1) and, the

incremental model given by eq. (15) is written as

∆Ts(k + 1) = Φ(k + 1, k)∆Ts(k) + Γ∆u(k) , (16)

Ts(k + 1) = Ts(k) + ∆Ts(k + 1) (17)

where

Φ(k + 1, k) = 1− hᾱ14T
3
R(k − 1)− hᾱ2 (18)

Γ = hᾱ3 (19)

The output predictors from k + 1 to k + N can now be
computed using eq.s (16) and (17).

∆Ts(k + 1) = Φ(k + 1, k)∆Ts(k) + Γ∆u(k)

∆Ts(k + 2) = Φ(k + 2, k + 1)∆Ts(k + 1) + Γ∆u(k + 1)

∆Ts(k + 3) = Φ(k + 3, k + 2)∆Ts(k + 2) + Γ∆u(k + 2)

. . .= . . .

∆Ts(k +N) = Φ(k +N, k +N − 1)∆Ts(k +N − 1) +

+Γ∆u(k +N − 1)

Ts(k + 1) = Ts(k) + ∆Ts(k + 1)

Ts(k + 2) = Ts(k) + ∆Ts(k + 1) + ∆Ts(k + 2)

Ts(k + 3) = Ts(k) + ∆Ts(k + 1) + ∆Ts(k + 2) + ∆Ts(k + 3)

. . .= . . .

Ts(k +N) = Ts(k) + ∆Ts(k + 1) + . . .+∆Ts(k +N)

Ts(k + 1) = Ts(k) + Φ(k + 1, k)∆Ts(k) + Γ∆u(k) (20)

Ts(k + 2) = Ts(k) + Φ(k + 1, k)∆Ts(k) + Γ∆u(k) (21)

+Φ(k + 2, k + 1)Φ(k + 1, k)∆Ts(k)

+ Φ(k + 2, k + 1)Γ∆u(k) + Γ∆u(k + 1)

Ts(k + 3)= ... (22)

Rearranging the terms, the predictors can be written in a
matrix equation that has the following form,

Tp = In,1Ts(k) + S∆Ts(k) +W∆U , (23)

where

Tp = [Ts(k + 1) Ts(k + 2) . . . Ts(k +N)]
′

,

I(n,1) = [1 1 . . . 1]

S is a column vector and W is a square matrix, and

∆U = [∆u(k) ∆u(k + 1) . . . ∆u(k +N − 1)].

Using (23) in the cost function (13), and minimizing it
with respect to the incremental control actions, the future
incremental control actions are given by

∆U = −(W ′W + ρI)−1W ′[In,1Ts(k)− TR + S∆Ts(k)] . (24)

In practice only the first value of ∆U , that is ∆u(k), is
applied to the process.

The equations that define the control law are

∆u(k) = K1(T (k)− TR(k)) +K2(Ts(k)− Ts(k − 1)) ,(25)

u(k) = u(k − 1) + ∆u(k) (26)
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Fig. 6. Exp1: Temperature control of a stainless steel
sample with the predictive controller with integral
action. During this experiment the sun power has a
low level and it is not stable.

and

us(k) = s−1
fs (u(k)/Gs(k)) (27)

that is used to compensate the static function of the
shutter and the sun power variability. Note that, in order
to simplify controller implementation, the controller gains
are computed off-line and an anti-windup mechanism is
used to readjust the control when it is saturated.

The robustness of the control algorithm can be analysed
using the methodology described in Stoica et al. (2007).

5. PRACTICAL EVALUATION OF THE CONTROL
LAW

The controller gains are computed off-line using ᾱ1, ᾱ2 and
ᾱ3. These parameters values are computed off-line from
model identification using process data collected from a
previous experiment.

To simplify the implementation of the controller, the
gains are kept constant, independent of the temperature
reference changes. Thus the terms of φ(., .) use a constant
(the same) value for the T 3

R term, usually an higher value
of the reference temperature signal that ensures a good
model description when the process is operating near the
sample temperature melting point.

Figure 6 shows the results obtained during an experiment
using the predictive controller with integral action to
control the temperature of a stainless steel sample. The
controller gains areK1 = 1.0585 andK2 = −3.282 that are
obtained for ρ = 0.5 and N = 25. During this experiment
the sun power has a low level, that is shown on figure 7
and was not constant. This fact causes perturbations on
the temperature of the sample that the controller is able to
compensate in part, since the sun available power was not
enough to heat the sample to the temperature reference.

The effect of the control weight ρ was evaluated for four
different values, ρ1 = 0.001 (K1 = 6.7223, K2 = −7.0317),
ρ2 = 0.01 (K1 = 4.3458, K2 = −5.937), ρ3 = 0.1 (K1 =
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Fig. 7. Exp1: Sun power variability that was present during
experiment 1, corresponding to the results shown
in fig.(6). These conditions are usually not used to
perform temperature stress tests.

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

T
(k

) 
[C

]

k [Time Samples]

Stainless Steel

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

u 
[%

]

k [Time Samples]

Fig. 8. Exp2: Evaluation of the control weight ρ on the
temperature control, ρ1 was used at k = 0, ρ2 at
k = 500, ρ3 at k = 1300 and ρ4 was used at k = 3100.
During this experiment the sun power almost constant
near 875W/m2. By increasing the control weight, the
control signal is smoother and the controller has a
better performance.

2.02321, K2 = −4.3504) and ρ3 = 0.2 (K1 = 1.5433,
K2 = −3.8565). The corresponding controller gains were
used during the experiment at the following time samples:
ρ1 was used at k = 0, ρ2 at k = 500, ρ3 at k = 1300, and
ρ4 was used at k = 3100. The results are shown in the
fig. 8, low values on the control weight generate high gain
values causing noise amplification on the control signal
and degrades the performance. This experiment also shows
that switching control can also be employed to selected
adequate gains from a set of gains computed off-line.

From the previous experiment it can be concluded that a
good temperature tracking is obtained during the increase
of the temperature reference signal and during the time
intervals where the reference signal is constant. During the
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Fig. 9. Exp3: Using active cooling, application of air flow,
to improve the temperature tracking during the sec-
ond and fourth reference cycles (reference decrease).
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Fig. 10. Exp3: Sun power during experiment 3 correspond-
ing to the results shown in fig.(9), that represent good
conditions for temperature stress tests.

decrease of the temperature reference, the natural energy
loss by radiation and by convection do not allow a good
tracking, since the rate of energy loss is not adequate. To
tackle this situation active cooling (air flow) is employed
to decrease the temperature of the sample. The air flow
is applied when the control signal of the shutter is zero,
the shutter is closed, and the sample temperature is
above the reference. This action can be considered as a
disturbance that the controller must compensate when
the temperature of the sample becomes lower than the
temperature reference. The results of this experiment are
shown in fig. 9. The application of the air flow occurs
during the second and fourth reference cycles (reference
decrease). During this experiment the solar power was
almost constant as shown in the fig. 10.

6. CONCLUSION

This paper describes the design of a control system for
solar furnaces for temperature cycling stress tests. The

process dynamics that accounts for the contribution of
losses by radiation and by convection and solar energy
absorption is characterized using off-line model identifica-
tion.

The control methodology, MPC with integral action, ex-
plores the structure of the process nonlinear dynamics,
where the controller gains are computed off-line. This
methodology avoids the use of online adaptation mecha-
nisms that may cause stability problems during stress test.
Experiment test results show that the proposed method-
ology has a good performance and can be used with active
cooling to improve the temperature tracking during the
decrease of the temperature profile. It is also demonstrated
that switching control can be employed to selected ade-
quate gains from a set of gains computed off-line.
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