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Abstract
Detecting the native language (L1) of non-native English speak-
ers may be of great relevance in some applications, such as com-
puter assisted language learning or IVR services. In fact, the L1
detection problem closely resembles the problem of spoken lan-
guage and dialect recognition. In particular, log-likelihood ra-
tios of phone posterior probabilities, known as Phone LogLike-
lihood Ratios (PLLR), have been recently introduced as fea-
tures for spoken language recognition systems. This represen-
tation has proven to be an effective way of retrieving acoustic-
phonotactic information at frame-level, which allows for its use
in state-of-the-art systems, that is, in i-vector systems. In this
paper, we explore the use of PLLR-based i-vector systems for
L1 native language detection. We also investigate several linear
and non-linear L1 classification schemes on top of the PLLR i-
vector front-ends. Moreover, we compare PLLR based systems
with both conventional phonotactic systems based on n-gram
modelling of phoneme sequences and acoustic-based i-vector
systems. Finally, the potential complementarity of the differ-
ent approaches is investigated based on a set of system fusion
experiments.
Index Terms: computational paralinguistics, native language
recognition, PLLR, i-vectors.

1. Introduction
This paper presents INESC-ID’s system for the Native Lan-
guage (N) Sub-Challenge of the Computational Paralinguistics
Challenge (ComParE) 2016 [1]. The task consists of identi-
fying the native language (L1) of non-native English speakers.
Detecting the L1 of the speakers is relevant for spoken language
applications, since it provides information about the users that
can be used to improve the interaction and the application per-
formance. For instance, L1-specific ASR models can be used
to improve recognition accuracy. Also, cultural information de-
duced from the identified L1 can lead to a more personal and
context-aware dialog. Finally, accurate L1 detection can also
play a role in software tools aimed at Computer Assisted Lan-
guage Learning (CALL).

The data for the challenge is the ETS Corpus of Non-
Native Spoken English, which contains 45-second answers
from speakers with eleven different L1 backgrounds – Ara-
bic, Chinese, French, German, Hindi, Italian, Japanese, Korean,
Spanish, Telugu and Turkish – in the context of the TOEFL
iBT® assessment. 3300 instances (41.3 hours) were selected
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for training, 965 (12.1 hours) for the development set, and 867
(10.8 hours) for testing.

In this paper, we explore the performance of i-vector sys-
tems based on Phone Log-Likelihood Ratios (PLLR) [2] on this
task. We opted for this approach since it has been recently in-
troduced and proved very effective in similar tasks. We also ex-
plore acoustic-based i-vector systems, and phonotactic systems
based on Phone Recognition followed by Language Modelling
(PRLM) for a matter of comparison. Furthermore, we investi-
gate linear and non-linear models for language characterization
based on i-vectors as an alternative to the simple, but effective,
single Gaussian mixture model proposed in [3]. Finally, we also
explore the combination of multiple subsystems through fusion
based on logistic regression.

The following section presents some previous work related
to the task. After that, Sections 3, 4, and 5 thoroughly describe
the features, the classifiers, and the calibration and fusion ap-
proaches explored in this work for L1 identification. Results are
presented and discussed in Section 6. Finally, the conclusions
of the work are stated in Section 7.

2. Related Work
Automatic native language identification is a relatively recent
task. For textual data, the most common approaches explore
features related to spelling errors and the quality of writing,
such as character, word, and POS n-grams, function words, and
dependency relations [4, 5, 6, 7].

On the other hand, for spoken interactions, the literature is
still very scarce. Different aspects of L2 speech may be ex-
plored, both at the segmental and supra-segmental level. The
first level concerns the mispronunciations that are mainly due
to the fact that some L2 phonemes are missing from the L1 in-
ventory of speech sounds, which causes the non-native speakers
to often replace an L2 phoneme by an L1 phoneme with a sim-
ilar place or manner of articulation. Teaching L2 pronunciation
traditionally focuses on segmentals. Supra-segmental features,
related to intonation, are particularly hard to acquire for adults
in L2. Hence, such features are also often used by humans to
identify the native language. In [8], for instance, the authors
use both cepstral and prosodic features, to identify 3 South In-
dian languages as L1 in non-native English speech.

The native language identification task is similar to the lan-
guage, accent, and dialect identification tasks in Spoken Lan-
guage Recognition (SLR). Thus, it makes sense to describe
some of the most successful approaches used on those tasks.
SLR approaches can be generally classified according to the
source of information that they rely on. The most successful
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systems are based on the exploitation of the acoustic [3, 9] and
phonotactic [10, 11] characteristics of each language. While
the first govern how a given language sounds, the latter are
the rules that govern the possible phone combinations in a lan-
guage. Usually, the combination of different sources of knowl-
edge and systems of different characteristics tends to provide
increased language recognition performances [12]. Recently,
a new set of features known as Phone Log-Likelihood Ratios
(PLLR) have been introduced for SLR [2]. These features con-
vey frame-by-frame acoustic-phonetic information, which can
be used in conventional acoustic systems like those based on
the well-known Total Variability Factor Analysis (i-vector) ap-
proach [13]. The use of PLLR in SLR has been proven to lead
to one of the best individual system results reported on relevant
benchmarks [14].

3. Features for L1 recognition
In this work we decided to use acoustic-phonetic, acoustic, and
phonotactic features for L1 recognition. The specific features
of each category are described below.

3.1. Acoustic-Phonetic Features

In terms of acoustic-phonetic features, we use PLLR features
as described in [14]. This section presents a brief summary of
the PLLR extraction process, including post-processing stages,
together with implementation details of the phonetic decoders.

3.1.1. PLLR definition

Considering a phone decoder that provides frame-by-frame
phone posteriors pi for each phone unit (1 ≤ i ≤ N ), so that∑N

i=1 pi = 1 and pi ∈ [0, 1], the PLLR features are computed
from these phone posteriors as follows [15]:

ri = logit(pi) = log pi
(1−pi)

i = 1, . . . , N. (1)

One of the main advantages of the transformation of phone pos-
teriors into PLLRs is that it allows for the gaussianization of the
resulting features, which makes them more suitable for typical
GMM modelling. However, as pointed out in [16], the PLLR
feature space as defined by Equation 1 is bounded, which limits
the distribution of the features. In order to avoid the bounding
effect, PLLRs are projected as described in [14]. Then, Prin-
cipal Component Analysis (PCA) is applied to decorrelate the
parameters and to reduce the feature dimensionality. After that,
shifted delta cepstra (SDC) coefficients [17] are obtained. Fol-
lowing [18], the SDC configuration for PLLR features is 13-2-
3-7, resulting in a feature vector of 104 components.

3.1.2. Phonetic classifiers

The phonetic classifiers used in this work are part of our
hybrid Automatic Speech Recognition (ASR) system, AU-
DIMUS [19]. The phonetic models are neural networks of the
MultiLayer Perceptron (MLP) type trained to estimate the pos-
terior probabilities of the different phonemes of a specific lan-
guage for a given input speech frame (and its context). In this
case, we have used four language-dependent phonetic decoders:
European Portuguese (pt), Brazilian Portuguese (br), European
Spanish (es) and American English (en). For each phonetic de-
coder, an independent set of PLLR features is obtained based on
the generated frame-by-frame posterior probabilities. In prac-
tice, frames that have silence as the most probable class are re-
moved.

Each of the recognizers combines four MLP outputs trained
with Perceptual Linear Prediction features (PLP, 13 static + first
derivative), PLP with log-RelAtive SpecTrAl speech process-
ing features (PLP-RASTA, 13 static + first derivative), Mod-
ulation SpectroGram features (MSG, 28 static) and Advanced
Front-End from ETSI features (ETSI, 13 static + first and sec-
ond derivatives). Each MLP network is characterized by the
size of its input layer that depends on the particular parameteri-
zation and the frame context size (13 for PLP, PLP-RASTA and
ETSI; 15 for MSG), the number of units of the two hidden lay-
ers (500), and the size of the output layer. In this case, only
monophone units are modelled, resulting in MLP networks of
41 (39 phonemes +1 silence + 1 breathing) soft-max outputs in
the case of en, 39 for pt (38 phonemes + 1 silence), 40 for br (39
phonemes + 1 silence) and 30 for es (29 phonemes + 1 silence).
The output size corresponds to the length of the PLLR feature
vectors before dimensionality reduction.

The language-dependent MLP networks were trained with
different amounts of annotated data. For the pt acoustic mod-
els, 57 hours of Broadcast News (BN) down-sampled data and
58 hours of mixed fixed-telephone and mobile-telephone data
were used. The br models were trained with around 13 hours
of BN down-sampled data. The es networks used 36 hours of
BN down-sampled data and 21 hours of fixed-telephone data.
The en system was trained with the HUB-4 96 and HUB-4 97
down-sampled data sets, that contain around 142 hours of TV
and Radio Broadcast data.

3.2. Acoustic Features

Acoustic features typically used for SLR have also been adopted
in this work. In particular, we used shifted delta cepstra (SDC)
of Mel-frequency Cepstrum Coefficients (MFCC) [17]. First, 7
MFCC static features are obtained and SDC features with a 7-1-
3-7 configuration are computed, resulting in a feature vector of
56 components. Then, frames of each segment that are simul-
taneously labeled as silence by the four previously described
language-dependent phonetic decoders are removed. Finally,
cepstral mean normalization is applied in a per segment basis.

3.3. Phonotactic Features

In order to model the phonotactics of each target native lan-
guage, a phonetic tokenization is obtained using the previously
described classifiers. Likewise, we use the same 4 language-
dependent ASR systems: pt, br, es and en. In this case, a de-
coding process is performed for each speech sequence (in con-
trast to simple frame-by-frame posterior probability computa-
tion). The AUDIMUS decoder is based on a weighted finite-
state transducer (WFST) approach [20]. A phone-loop gram-
mar with minimum phoneme duration of three frames is used to
obtain the phonetic sequences.

4. Front-end models for L1
characterization

4.1. The i-vector front-end

Total-variability modelling [13] has emerged as one of the most
powerful approaches to the problems of speaker and language
verification. In this approach, the variability present in the high-
dimensional GMM supervector is jointly modelled as a single
low-rank total-variability space. The low-dimensionality total
variability factors extracted from a given speech segment form
a vector, named i-vector, which represents the speech segment
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in a very compact and efficient way. Thus, the total-variability
modelling is used as a factor analysis based front-end extractor.
The success of i-vector based speaker recognition has motivated
the investigation of its application to other related fields, includ-
ing language recognition [3, 9], where it has become the current
de facto standard for acoustic SLR. In this work, we have de-
veloped i-vector based LR sub-systems very similar to the one
in [3], where the distribution of i-vectors for each language is
modelled with a single Gaussian.

It is worth mentioning that, as an alternative to the i-vector
approach, classifiers based on feed-forward networks were also
trained for acoustic and acoustic-phonetic features. These ap-
proaches employed various techniques to account for the vari-
able length of the feature matrices including Convolutional and
Recurrent neural networks (CNN, RNN). In general these ap-
proaches led to poor results compared to i-vector modelling.

4.1.1. Total variability and i-vector extraction

The first step of i-vector system development consists of train-
ing a GMM-UBM. In this case, a GMM-UBM of 1024 mixtures
is trained using all the training data available for the challenge.
Then, the total variability factor matrix (T) is estimated accord-
ing to [21]. The dimension of the total variability sub-space
is fixed to 400. Next, zero and first-order sufficient statistics
of the training set are used for training T. In order to do so,
10 Expectation-Maximization (EM) iterations of consecutive
Maximum Likelihood (ML) and minimum divergence estima-
tion updates are applied. The covariance matrix is not updated
in any of the EM iterations. The estimated T matrix is used
for extraction of the total variability factors of the processing
speech segments as described in [21]. Additionally, we apply i-
vector centering and whitening [22] that is known to contribute
to a reduction of the channel variability. Finally, the resulting
factor vectors are normalized to be of unit length, which we will
henceforth refer to as i-vectors.

4.1.2. Language modelling and scoring

Like in [3], all the extracted i-vectors of each target L1 language
are used to train a single mixture Gaussian distribution with full
covariance matrix shared across different target languages. As
an alternative to this approach, Log-linear and non-linear classi-
fiers based on feed-forward networks were also investigated. In
fact, it could be observed that the i-vector front-end already pro-
vided a very good separation of the classes which led to similar
results for the different modelling techniques. For this reason,
experimental results on alternative classifiers on the top of i-
vectors are not reported. Finally, for a given test i-vector, each
Gaussian model is evaluated and log- likelihood scores are ob-
tained. The 11 likelihoods of the 11 L1 target languages form a
vector of scores that is used for later calibration and fusion.

4.2. PRLM-LR sub-systems

The Phone Recognition followed by Language Modelling
(PRLM) systems used in this work exploit the phonotactic in-
formation extracted by the four individual tokenizers described
previously. For each target L1 language and for each tokenizer
a different phonotactic n-gram language model is trained us-
ing the phonetic sequences of the challenge training data set.
For that purpose, the SRILM toolkit has been used1 and 3-gram
back-off models smoothened using Witten-Bell discounting are

1http://www-speech.sri.com/projects/srilm/

obtained. During test, the phonetic sequence of a given speech
signal is extracted with the phonetic decoders and the likelihood
of each target language model is evaluated. Like the i-vector
sub-systems, the likelihoods of the 11 L1 target languages form
a vector of scores that is later used for calibration and fusion.

Similarly to [23], we tried likelihood scores obtained with
phonotactic models of an arbitrary set of languages trained on
external data as possibly discriminant features for L1 recogni-
tion. This approach, however, did not reveal useful for this task.

5. Calibration and Fusion Back-End
Calibration and fusion was carried out using a combination of
linear Gaussian Back-Ends (GBE) followed by a Linear Logis-
tic Regression (LLR). GBE were applied after every single sub-
system to transform the score-vector xi into a 11-element log-
likelihood vector si, corresponding to each of the target lan-
guages, using the following equation:

si = Aixi + oi, (2)

where Ai is the transformation matrix for system i and oi is
the offset vector. Notice that in this work the dimension of xi

for all the considered sub-systems is 11. Nevertheless, we kept
the GBEs given that they contributed for improved language
identification in the development experiments.

Then, LLR was used to fuse the log-likelihood outputs gen-
erated by the linear GBEs of the selected sub-systems to pro-
duce fused log-likelihoods l as follows:

l =
∑
i

αisi + b, (3)

where αi is the weight for sub-system i and b is the language-
dependent shift. For this challenge, the language with the high-
est fused log-likelihood is the hypothesized L1 language.

During the development of our systems, the GBEs and the
LLR fusion parameters were trained and evaluated on the devel-
opment set using a kind of 2-fold cross-validation [24]: devel-
opment data was randomly split in two halves, one for param-
eter estimation and the other for assessment. This process was
repeated using 10 different random partitions so that the mean
and variance of the systems’ performance could be computed.
This method allowed for a comparison and ranking of the dif-
ferent sub-systems under study. Then, for the trial submissions,
no partition was made and all the development data was used to
simultaneously calibrate the GBEs and the LLR fusion. Cali-
bration was carried out using the FoCal Multi-class Toolkit 2.

6. Experimental Results
6.1. Baseline System

Similarly to previous years, the baseline system proposed for
the Nativeness challenge employs the ComParE features set.
This comprises 6373 features resulting from the computation of
various functionals over low-level descriptor (LLD) contours.
The features are computed with openSMILE [25] employing the
configuration file IS13 ComParE.conf. All features were
normalized to the mean and standard deviation of the training
set. The classifier used is a Support Vector Machine (SVM)
with epsilon insensitive loss, and a fixed ε of 1.0. Sequential
Minimal Optimization (SMO) is used as the training algorithm.

2https://sites.google.com/site/nikobrummer/
focalmulticlass
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The optimal complexity was set to 10−2, based on the develop-
ment set. The SVM implementation in WEKA 3 [26] was used
for this purpose. See [1] for a complete description.

Table 1 shows the baseline performance in terms of Accu-
racy, Unweighted Average Recall (UAR) and Recall for each
of the languages. Table 2 also provides the confusion matrix
across languages for comparison purposes.

Table 1: Accuracy, UAR, and per language Recall of the base-
line and our best submitted system over the development set.

Metric Baseline L2F submission

Accuracy 45% 84%
UAR 45% 84%
Recall (ARA) 33% 86%
Recall (CHI) 45% 94%
Recall (FRE) 36% 83%
Recall (GER) 64% 91%
Recall (HIN) 56% 77%
Recall (ITA) 48% 87%
Recall (JPN) 42% 82%
Recall (KOR) 35% 81%
Recall (SPA) 32% 75%
Recall (TEL) 51% 75%
Recall (TUR) 48% 89%

Table 2: Baseline Confusion Matrix over the development set
(rows: reference; columns: hypothesis).

A
R

A

C
H

I

FR
E

G
E

R

H
IN

IT
A

JP
N

K
O

R

SP
A

T
E

L

T
U

R

ARA 29 3 5 7 5 5 6 6 7 6 7
CHI 4 38 5 4 5 2 5 10 6 4 1
FRE 11 7 29 8 0 4 3 1 11 0 6
GER 5 3 5 55 1 7 1 2 5 1 0
HIN 4 1 1 0 47 2 2 2 2 21 1
ITA 6 2 9 6 6 46 0 4 10 1 4
JPN 4 13 4 2 2 1 36 11 10 1 1
KOR 4 19 1 2 2 3 14 32 5 3 5
SPA 6 11 15 6 2 4 9 9 32 1 5
TEL 2 0 2 2 24 2 2 2 2 43 2
TUR 6 5 5 5 2 6 7 8 5 0 46

6.2. Proposed System

Table 3 presents the results obtained by our phonotactic and i-
vector approaches on the challenge’s development set. Notice
that these results are on the complete development set, that is,
the back-end cross-validation strategy described previously was
not applied to obtain these results. The first thing to notice is
that both approaches were able to surpass the baseline. How-
ever, the i-vector approach did so by a much larger margin. In
this sense, the fusion of the 4 phonotactic sub-systems obtained
63.3% UAR, which represents an improvement of 18.2 percent-
age points over the baseline. On the other hand, even the worse
individual i-vector approach was able to improve the baseline
by a large margin. It is worth noticing that all the individual
i-vector sub-systems based on PLLR features outperformed the
one based on acoustic features. Moreover, the combination of
the 4 PLLR based sub-systems provides a remarkable improve-
ment with respect to the conventional i-vector acoustic sub-
system. Nevertheless, the fusion of the 5 i-vector sub-systems
resulted in additional performance gains. This combination of
PLLR and MFCC i-vector approaches corresponds to the L2F
primary submission to the challenge.

Table 3: UAR [%] and Accuracy [%] results obtained by the
phonotactic and i-vector approaches on the development set.

UAR [%] Acc [%]

Baseline 45.1 44.9

Phonotactic (BR) 46.4 46.2
Phonotactic (EN) 51.4 51.4
Phonotactic (ES) 50.0 49.8
Phonotactic (PT) 53.1 53.1
Phonotactic (All) (I) 63.3 63.2

i-vectors (MFCC) (II) 76.2 76.3

i-vectors (BR-PLLR) 76.9 76.9
i-vectors (EN-PLLR) 79.2 79.2
i-vectors (ES-PLLR) 77.6 77.4
i-vectors (PT-PLLR) 80.6 80.5
i-vectors (ALL-PLLR) (III) 83.0 82.9

(I) + (II) 78.6 78.7
(II) + (III) 84.6 84.6

Table 4 shows the confusion matrix of the L2F system sub-
mitted to the challenge over the development set. The most con-
fused classes are the same as in the baseline system (Table 2),
namely, between Telugu and Hindi, although with a lower fre-
quency. On the other hand, the large confusion shown by the
baseline system over Chinese, Japanese, and Korean is not a
problem for the proposed system.

Finally, the proposed L2F system achieves 81.3% UAR in
the challenge test set, in contrast to the 47.5% of the baseline
system, which is again surpassed by a large margin. The perfor-
mance drop with respect to the development set results can be
partially due to a slight over-fitting of the back-end estimation.
Nevertheless, we consider these results very promising.

Table 4: Confusion Matrix of the i-vector system over the de-
velopment set (rows: reference; columns: hypothesis).

A
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A

C
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FR
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H
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A
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N

K
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SP
A

T
E

L

T
U

R

ARA 77 0 3 1 0 1 1 0 1 0 2
CHI 0 78 0 1 0 1 2 0 1 1 0
FRE 3 0 64 2 0 2 2 0 5 0 2
GER 2 1 2 78 0 0 0 1 0 0 1
HIN 0 0 0 0 67 0 0 0 0 16 0
ITA 1 0 5 2 0 79 1 1 3 0 2
JPN 1 1 1 0 0 0 70 8 4 0 0
KOR 2 4 1 1 0 0 5 77 1 0 0
SPA 2 1 2 1 0 5 4 5 77 1 2
TEL 0 0 0 0 18 0 0 0 0 65 0
TUR 0 1 1 3 1 2 0 2 1 0 84

7. Conclusions
This paper explored the use of PLLR-based i-vector systems
for native language detection, building on the good results this
method achieves for the closely related task of spoken language
and dialect recognition. Results on the Native Language (N)
Sub-Challenge of the Computational Paralinguistics Challenge
(ComParE) 2016 confirm the potential of the approach outper-
forming the baseline by a large margin. A possible cause for the
observed performance differences is the fact that the i-vector ap-
proach is able to better leverage the information present in large
data-sets. As future work direction, it would be worth investi-
gating approaches to identify the segments in each sentence that
provide a better L1 discrimination.
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