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an argument stating some advantages in sharing summarized
datasets within the MIR community.

An interesting research direction would be to automatically
determine the best vocabulary size for each song. Testing sum-
marization's performance on different classi�cation tasks (e.g.,
with more classes) is also necessary to further strengthen our
conclusions. More comparisons with non-contiguous human-
oriented summaries should also be done. More experimenting
should be done in other MIR tasks that also make use of only
a portion of the whole signal.
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