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Abstract— A major obstacle in the design of controllers to
regulate the depth of anesthesia (DoA) consists in the high
model uncertainty due to inter-patient variability. Surprisingly,
the use of control design methods that explicitly tackle this
problem is almost absent from the literature on automatic
control of anesthesia. In this work, a DoA controller is designed
taking into account model uncertainty to comply with robust
stability and robust performance specifications for a patient
population undergoing elective general surgery, with hypnosis
induced by the drug propofol. Due to its Wiener nonlinear
structure, the DoA model can be linearized around a given
operating point. Therefore, using a database with 18 patient
models, a non-parametric description of uncertainty for a
linearized model is first performed. By using H∞ design
methods, a continuous linear controller is then designed so as to
ensure robust stability and performance within the uncertainty
bounds defined. The controller that results from this procedure
is approximated by a controller with a lower order that, in turn,
is redesigned in discrete time for computer control application.
The final result is tested in nonlinear realistic patient models,
with acceptable closed-loop results.

I. INTRODUCTION

To prevent patient awareness during a surgical procedure,
hypnosis or depth of anesthesia (DoA) is induced with the
administration of hypnotics. The appropriate dosage of these
drugs is an important issue for the patient well-being, since
an aware state of the patient, as a result of under-dosing,
may cause serious long-term psychological consequences,
whereas the overdosage may be harmful with respect to
postoperative morbidity and mortality. The current anesthetic
procedure to induce and maintain the DoA level is mainly
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based on recommended dosages, according to the patient
characteristics, and on the anesthetist experience.

The automatic control of DoA is now a possibility due
to the use of the electroencephalogram signal, resulting in
measures such as the bispectral index (BIS) [1].

Several control techniques have been studied for DoA
using the BIS index as the measured variable, namely,
proportional-integral-derivative controllers (PID) [2], model
predictive control (MPC) [3], adaptive control [4], [5], neural
[6] and fuzzy logic [7] control, in which case the results show
the potential to reduce the amount of drug and to maintain
hypnosis more accurately than the open-loop control per-
formed with the current clinical practice.

The drug effect on the patient is highly dependent on the
patient himself, that leads to high uncertainty levels for the
automatic control design. This motivates the use of robust
control design techniques in order to design a controller with
the appropriate performance to tackle these uncertainties.

Robust control techniques applied to DoA, though
scarcely, have been reported in the bibliography, with pre-
dictive control [8] and with PID tuning control [9]. Internal
model control (IMC) has been explored in [10], indicating
better performances with patient uncertainties, compared to
the ones obtained with a PID controller. A robust deadbeat
controller is designed in [11] that shows an improved per-
formance in over/undershooting and settling time when com-
pared with the performances of two PID based controllers.

The problem of DoA control design in the presence of
model uncertainties and unmodeled dynamics is addressed
in this paper. The controller is designed based on H∞ theory
and is such as to provide an adequate drug administration,
with a good reference tracking and an output disturbance
rejection, while stabilizing the class of possible patient
models within the uncertainty bounds considered.

The paper is organized as follows. After this introduction,
the mathematical model is described in section II and the
control design method is presented in section III, where
robust performance and robust stability are considered. Con-
clusions are drawn is section IV.

II. PHARMACOKINETIC / PHARMACODYNAMIC
MODEL FOR PROPOFOL

Models for propofol have been the subject of several
publications [12], [13], [14]. This section describes the
particular models used in a state-space form that is suitable
for the purpose of this work.

The effect of the hypnotic drug on the patient can be
modeled by the interaction of three compartments, a central
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compartment where the drug is perfused, and two peripheral
compartments (Fig. 1).
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Fig. 1. Schematic representation of the compartmental model for the
dynamic response of hypnosis. The shadowed region is the PK part of the
model.

One of the peripheral compartments represents the fast
distribution of the drug from the central compartment to
the muscles and organs, and the other represents the bones
and fat tissue to where the drug distribution is slow. These
interactions form the pharmacokinetic model (PK) of the
drug, as it relates the drug dose u (ml/h) administered to
the patient with the plasma concentration of the drug cp
(µg/ml). The mathematical model that describes the drug-
patient pharmacokinetics is written in state-space form as

ṁ1(t) = −k10m1(t)− k12m1(t)− k13m1(t)
+k21m2(t) + k31m3(t) + 1000

60 u(t)
ṁ2(t) = k12m1(t)− k21m2(t)
ṁ3(t) = k13m1(t)− k31m3(t)
cp(t) = 1

1000×V1
m1(t)

, (1)

where mi (µg), with i = 1, 2, 3, is the mass in the com-
partment i, kij (min−1) is the equilibrium constant from the
i-th to the j-th compartment and V1 (l) is the volume of the
central compartment.

The relationship between the plasma concentration of the
drug and its actual effect is referred to as the pharmacody-
namic model (PD). The PD model encompasses the relation
between the plasma concentration and the concentration in
the effect compartment, and the relation between this last
variable and the DoA level. The drug concentration in the
effect compartment ce (µg/ml) is described by

ċe = −keoce + k1ecp, (2)

where k1e (min−1) is the equilibrium constant between the
central and the effect compartments that is considered to
be equal to keo which represents the removal of the drug
from the body. The model constants are computed with the
Schnider model [15] for the database considered in this
work. The Schnider model depends on weight (w), height
(h), gender (within the computation of the lean body mass -
LBM ) and age, with parameters given by

V1 = 4.27 (l) (3)

V2 = 18.9− 0.391 (age− 53) (l) (4)

V3 = 238 (l) (5)

L1 = 1.89− 0.0456 (w − 77)− 0.0681 (LBM − 59)

+ 0.0264 (h− 177) (l/min) (6)

L2 = 1.29− 0.024 (age− 53) (l/min) (7)

L3 = 0.836 (l/min) (8)

keo = 0.456 (min−1), (9)

where

LBM = 1.1× w − 128
(w
h

)2
(Male) (10)

LBM = 1.07× w − 148
(w
h

)2
(Female), (11)

and

L1 = V1 k10 (12)
L2 = V2 k21 (13)
L3 = V3 k31 (14)

V2 = V1
k12
k21

(15)

V3 = V1
k13
k31

, (16)

where Li, with i = 1, 2, 3, is the clearance that is defined
as the volume of plasma from which the drug is completely
removed per unit time. Variables V2 and V3 are the volumes
of the fast and slow compartments, respectively.

The drug effect observed on the patient may be expressed
as a nonlinear function of the effect compartment concentra-
tion, such as

BIS = E0 + (Emax − E0)
cγe

cγe + Cγ50
, (17)

where E0 is the baseline effect at zero concentrations, Emax
is the peak drug effect, C50 is the concentration related
with 50 % of the drug effect and γ is the steepness of the
concentration-response relation.

Bouillon et al. outlined in [16] that there is a synergetic ef-
fect between the analgesic drug remifentanil and the hypnotic
drug propofol that is revealed in the electroencephalographic
measure BIS. This synergic relationship can be expressed in
the overall effect as

BIS =
97.7

1 + ((1 + β)Uprop + Uremi)
γ , (18)

where β is a patient dependent parameter and Uprop and
Uremi are the normalized effect concentrations defined as

Uprop =
cprope

Cprop50

, Uremi =
cremie

Cremi50

, (19)

where the super-index prop refers to the variables associated
with propofol and the hypnotic model, whereas the super-
index remi refers to the variables associated with remifentanil
and the analgesic model. In this work, the remifentanil dose
appears in the model as a disturbance. Although one could
take advantage of knowing its value, this feedforward term
is not considered in this work
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A. Linear model for DoA

The linear part of the model (1,2) that relates the drug dose
u with the effect compartment concentration, is described by
the state-space model{

ẋ(t) = Φ x(t) + Γ u(t)
ce(t) = I x(t)

, (20)

where Φ is a patient dependent matrix defined as

Φ =


−(k10 + k12 + k13) k21 k31 0

k12 −k21 0 0
k13 0 −k31 0
keo

1000×V1
0 0 −keo

 , (21)

x is the state defined as

x =


m1

m2

m3

ce

 , Γ =


1000
60
0
0
0

 , I =
[
0 0 0 1

]
, (22)

and t is the continuous time measured in minutes.
In the Laplace transform domain, the state-space system

(20) is described by

ce(s) = F (s)u(s), (23)

where F (s) is the transfer function of the linear part of the
model and s is the Laplace variable.

The nonlinear relationship between the effect compartment
concentration and the DoA level only affects the static gain of
the linearized model, yielding two sources of uncertainties:
change of the derivative with respect to the equilibrium point
and parameters variability. After a linear approximation by
the Jacobian linearization of the nonlinear description of
the dependence of the observed effect (18) on the effect
compartment concentration, the patient response is described
by

BIS(s) = F (s) η u(s) = G(s) u(s), (24)

where η is given by the derivative of BIS, in (18), with
respect to cprope , and G(s) is the transfer function that relates
the patient response, measured by the BIS index, with the
drug dose. The variable η represents the static gain of the
nonlinear term of the model, and relates the increment of
the drug effect-site concentration with its effect given by the
increment of the BIS index, with respect to its equilibrium
value.

III. CONTROL DESIGN

In a surgical procedure, the BIS index should be around
50 and kept over the threshold of 30 all the time, to prevent
postoperative morbidity.

An automatic feedback control system, as the one shown
in Fig. 2, can be implemented, where the controller (K) is
designed to compare the value of the BIS index (y) with the
desired level (r), and to compute the amount of drug (u)
required to deliver to the patient. The drug is administered
to the patient through a syringe that is commanded by
the computer, that samples the BIS index value every 5

r
K

u
G

d

y

n

Fig. 2. Schematic representation of the control system

seconds. In this control system (Fig. 2), the noise sensor (n)
and load disturbances (d) are considered, and the controller
is designed to have integral action in order to overcome
possible steady-state errors.

The closed-loop patient response is

y =
1

1 +KG
d+

KG

1 +KG
r − KG

1 +KG
n. (25)

The transfer function from d to y is the sensitivity function,
S(s), and the transfer function from r to y is the complemen-
tary sensitivity function, T (s). The transfer function n→ y
is −T (s).

In the work described here, the H∞ control design tech-
nique is used to design a suitable controller for this problem
[17]. The H∞ method approaches the control problem as an
optimization problem in the frequency domain, in order to
yield the desired time domain response. The main goal is to
obtain a controller that is able to yield robust performance as
well as robust stability, in the presence of model uncertainty.

The model uncertainty can be characterized as a multi-
plicative uncertainty, with respect to the nominal model GN ,
from which a true model G can be computed as

G(jω) = GN (jω)(1 + ∆(jω)), (26)

where ∆ is the multiplicative uncertain dynamics at fre-
quency ω. In this work, a database of 18 models are set to be
used in the design of the robust controller. The patients in this
database have health features corresponding to levels I to IV
according to the American Society of Anesthesiology, being
subject to elective surgery. The data was originally collected
to other studies that satisfy ethics requirements. The dynamic
behavior of these models is highly diverse, as shown by the
frequency response of Fig. 3

A. Robust Performance

For robust performance, the described system in (25) is
designed to reject load disturbances and sensor noise, in the
presence of model uncertainty. The load disturbance rejection
objective is defined as a weighted sensitivity minimization
problem and the sensor noise rejection objective is defined as
a weighted complementary sensitivity minimization problem.
This is accomplished by introducing weighting functions
in the closed-loop response that behave as boundaries for
the models sensitivity functions (S) and complementary
sensitivity functions (T ).

The two performance goals are closely related through
the specification of the controlled system bandwidth (by the
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Fig. 3. Frequency response of all the G(s) models in the patient bank.
The nominal model is represented in red.

sensitivity function), and reference tracking and robust sta-
bility specifications (related to the complementary sensitivity
function). The weighted system is,

y =
1

1 +KG
WS d+

KG

1 +KG
r− KG

1 +KG
WT n, (27)

as depicted in Fig. 4, where WS and WT affect the sensitivity
and the complementary sensitivity functions, respectively
Thus, for the load disturbance rejection performance, the gain

r
G

d
WS

WT

y

n

u

ym

K

Fig. 4. Schematic representation of the control action with the weighting
functions.

of the weighted sensitivity function must be kept below 1,
implying that

|S.WS | < 1 ⇔ |S| < 1

|WS |
. (28)

This weighted sensitivity function enforces the desired band-
width, while the weighted complementary sensitivity func-
tion enforces the adequate roll-off outside the bandwidth in
which the disturbances are rejected.

The noise rejection problem is approached in the same
way, as the gain of the weighted complementary sensitivity
function must be kept below 1, so that

|T.WT | < 1 ⇔ |T | < 1

|WT |
. (29)

Conditions (28) and (29) must be satisfied for each Si and
Ti, with i = 1, ..., 18 of all the Gi models. In this case, the
weighting functions WS and WT are selected to have the
frequency response shown in Fig. 5.

The weight W−1T is a low-pass function whose shape
is selected such as to ensure reference tracking up to the
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Fig. 5. Magnitude of the weighting functions WS and WT , and of the
respective inverse functions W−1

S and W−1
T . The nominal model GN and

the cover W (upper bound function) of all uncertainties of model Gi are
also shown.

desired bandwidth (that implies that W−1T is small) and
noise rejection in the higher frequency band, as well as
robustness with respect to high frequency model uncertainty
(that implies that W−1T is high in this band) [17]. A dual
behavior follows to W−1S .

B. Robust Stability

The robust stability objective consists in the design of a
stabilizing controller for all the plant models in the given
class of the 18 models. Thus, for robust stability analysis,
the Nyquist stability criterion is called upon. Based on this
criterion, the controller K designed to stabilize the nominal
model GN , also stabilizes G if

|KGN (jω)−KG(jω)| < |1 +KGN (jω)| . (30)

This is called the robust stability condition.
With (26), condition (30) can be written in the form

|∆(jω)| < |1 +KGN (jω)|
|KGN (jω)|

. (31)

Let l(ω) be an upper bound function of the multiplicative
uncertainty, meaning that

|∆(jω)| = |KGN (jω)−KG(jω)|
|KGN (jω)|

< l(ω). (32)

Therefore, if l(ω) is such that

l(ω) <
|1 +KGN (jω)|
|KGN (jω)|

, (33)

condition (30) is satisfied, and all the models that verify (32)
will be stabilized by the controller K.

Condition (33) may be written in the form

1

l(ω)
>

|KGN (jω)|
|1 +KGN (jω)|

= |TN (jω)| , (34)

where TN is the complementary sensitivity function obtained
with the nominal model and corresponds to the closed-loop
transfer function obtained when the controller is coupled with
the nominal model. Thus, if an upper bound function l(ω)
for the multiplicative uncertainties exists such that l−1(ω)
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is also an upper bound for the complementary sensitivity
function, the controller designed for the nominal model has
robust stability, meaning that all the systems Gi that satisfy
(32) are stabilized by the nominal controller.

C. Controller Synthesis and Analysis

With all the performance and robust stability issues taken
into account, the controller synthesis is performed using
the DK–algorithm for µ–synthesis, explained in [17], in
the implementation provided by the function dksyn of
MATLAB R©, that is described by Robust Control Toolbox TM

User’s Guide [18]. The controller description is a state-space
model expressed as{

ẋc(t) = A xc(t) +B e(t)
u(t) = C xc(t)

, (35)

where A, B and C are the matrices that result from the
design algorithm, e is the tracking error, e = r−ym, and xc
is the controller state.

The resulting controller stabilizes all models, if the loop
gain, verifies

|KG(jω)| < 1 at ∠KG(jω) = −180◦, (36)

where |KG(jω)| is the gain and ∠KG(jω) is the phase, is
fulfilled for all Gi, with i = 1, ..., 18.

The controller yields the desired performance, since the
weighting functions WS and WT are the upper bounds of all
models sensitivity functions and complementary sensitivity
functions, respectively, as shown in Fig. 6.
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is used to check the robust performance conditions.

The robust stability condition, that relies on the existence
of an upper bound function l(ω) that yields conditions (32)
and (34), is fulfilled as shown in Fig. 7 and 8, as the function
l(ω) and its inverse are, respectively, the upper bound of all
uncertainties and of the nominal complementary sensitivity
function.

The resulting controller has 20 states and is approximated
by a 8th– order controller, preserving all system character-
istics in the frequency range of interest, as shown by the
frequency response of Fig. 9.
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The controller is redesigned in discrete time, with a
sampling time of 5 seconds, and the resulting controller
ensures robust performance and robust stability.

The time response of Fig. 10 shows the controller action
and the system response for all models, where it is possible
to conclude that the controller is able to provide acceptable
performances in reference tracking and noise rejection, as
well as stabilizing all the models.

IV. CONCLUSIONS

An approach to the design of robust controllers for DoA
based on H∞ design and µ–synthesis has been proposed
and illustrated using a bank of patient data. The approach
consists in characterizing a multiplicative uncertainty model
description for a set of patients, enlarging this model with
an integrator to ensure zero steady-state tracking error,
controller design using the DK–algorithm, controller order
reduction, and controller redesign in discrete time to obtain
a controller suitable for computer application.

The controller that is designed aiming at robust perfor-
mance and stability is able to track the reference for all the
models. The performance conditions are satisfied for all the
models, since the sensitivity functions and complementary
sensitivity functions fall below the bounds W−1S and W−1T ,
respectively. This controller has robust stability for the 18
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models of the database, yielding appropriate time responses
with simulated noise as to mimic the real sensor noise.

The order reduction and the a posteriori discretization
allows computer control application.
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