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Abstract—In this paper, a novel approach to video temporal
decomposition into semantic units, termed scenes, is presented.
In contrast to previous temporal segmentation approaches that
employ mostly low-level visual or audiovisual features, we in-
troduce a technique that jointly exploits low-level and high-
level features automatically extracted from the visual and the
auditory channel. This technique is built upon the well-known
method of the scene transition graph (STG), first by introducing
a new STG approximation that features reduced computational
cost, and then by extending the unimodal STG-based temporal
segmentation technique to a method for multimodal scene seg-
mentation. The latter exploits, among others, the results of a large
number of TRECVID-type trained visual concept detectors and
audio event detectors, and is based on a probabilistic merging
process that combines multiple individual STGs while at the
same time diminishing the need for selecting and fine-tuning
several STG construction parameters. The proposed approach
is evaluated on three test datasets, comprising TRECVID docu-
mentary films, movies, and news-related videos, respectively. The
experimental results demonstrate the improved performance of
the proposed approach in comparison to other unimodal and
multimodal techniques of the relevant literature and highlight the
contribution of high-level audiovisual features toward improved
video segmentation to scenes.

Index Terms—Audio events, scene transition graph, scenes,
video segmentation, visual concepts.

I. Introduction

V IDEO DECOMPOSITION into temporal units is an
essential pre-processing task for a wide range of video

manipulation applications, such as video indexing, nonlin-
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ear browsing, classification, and others. Video decomposition
techniques aim to partition a video sequence into segments,
such as shots and scenes, according to semantic or structural
criteria. Shots are elementary structural segments that are
defined as sequences of images taken without interruption by a
single camera [1]. On the contrary, scenes are longer temporal
segments that are usually defined as logical story units (LSUs):
higher-level temporal segments, each covering either a single
event (e.g., a dialog) or several related events taking place
in parallel [2]. The close relation between video scenes and
the real-life events depicted in the video make scene detection
a key-enabling technology for advanced applications such as
event-based video indexing; the latter has been gaining signif-
icant attention, as part of recent efforts toward experience and
event-based multimedia manipulation [3]. Fig. 1(a) illustrates
the relations between different temporal segments of a video.

Video segmentation to shots and scenes are two differ-
ent problems that are characterized by considerably different
degrees of difficulty. State-of-the-art shot segmentation tech-
niques, detecting the presence of video editing effects such
as cuts and fades with the use of low-level visual features,
have been shown in large-scale experiments (e.g., TRECVID)
to reach an accuracy that is close to perfect; this accuracy is
deemed by the relevant community to be sufficient for any
practical application [4]. On the contrary, scene segmentation
is still an open research problem, with most approaches of
the literature failing to take into account the semantics of the
content in performing a task that by definition is based on
semantic criteria; different consecutive parts of the video are
assigned to the same scene, according to the literature, simply
because they present similar low-level audiovisual properties,
whereas it is much more than such low-level properties that
make humans recognize (and request to consume, in applica-
tions such as retrieval) different scenes in a video.

In this paper, a novel approach to video temporal decom-
position into scenes is presented. This builds upon the well-
known technique of the scene transition graph (STG) [5],
which it extends, and additionally exploits recent advances
in sematic video analysis tasks in order to overcome the lim-
itations of existing scene segmentation approaches. Initially,
a new STG approximation that features reduced computa-
tional cost is introduced. This is important for ensuring the
efficiency of a subsequent processing stage, which mandates
the construction of multiple STGs. Then, a generalized STG-
based (GSTG) technique is proposed for multimodal scene
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Fig. 1. (a) Video stream decomposition to frames, shots, and scenes.
(b) Overview of the proposed approach for video segmentation to scenes.

segmentation. This is based on first constructing multiple
STGs that separately exploit different audiovisual features for
segmentation, using a new algorithm for the extension of
STG to non-visual input, and second on using a probabilistic
merging process to combine their results while at the same
time diminishing the need for selecting and fine-tuning several
STG construction parameters. In contrast to previous temporal
segmentation approaches that employ mostly low-level visual
or audiovisual features, the proposed technique jointly exploits
low-level and high-level features automatically extracted from
the visual and the auditory channel. The latter include model
vectors that are made of visual concepts and audio events,
previously unused in scene segmentation tasks. By taking
into account several low-level and high-level features coming
from multiple modalities and at the same time diminishing the
need for heuristic parameter selection, the proposed approach
becomes easily applicable to different video genres and deliv-
ers significantly more accurate results than previous methods,
working only with low-level features. A broad overview of the
proposed approach is given in Fig. 1(b).

The rest of this paper is organized as follows. The state-
of-the-art in video segmentation to scenes is reviewed in
Section II. The proposed fast STG approximation is introduced
in Section III. The GSTG-based technique is developed in
Section IV, followed in Section V by a presentation of the
low-level and high-level audiovisual features used as part of
GSTG in this paper. In Section VI, results from experiments
and comparisons on three different datasets are reported, and
our conclusions are drawn in Section VII.

II. Related Work

Many works on video segmentation to scenes have appeared
in the last few years. A common characteristic of almost all
of them is the assumption that each shot can belong to just
one scene, thus scene boundaries are a subset of the video’s

shot boundaries. As a result, video temporal decomposition
into scenes is typically based on some form of shot grouping;
shots are identified using any one of the highly reliable shot
segmentation approaches of the literature.

A. Scene Segmentation Techniques

The techniques of the relevant literature can be broadly
classified into two classes, on the basis of the features that
they use for representing the shots in the process of grouping
them: unimodal techniques, which typically rely on visual
information alone, and multimodal ones, typically combining
visual and audio cues.

Unimodal techniques represent each shot with the use of
low-level visual features. Global color features [e.g., hue-
saturation-value (HSV) histograms] of selected keyframes are
the most frequently used ones, although the use of color
features of spatial regions of keyframes has also been proposed
[6]. Color features are sometimes used in combination with
motion [7] or structural information (e.g., shot length in
[8]). The extraction of color and texture features directly
from the compressed video stream, without selecting specific
keyframes, has also been proposed [9]. Based on such shot
representations, several algorithms have been used for group-
ing the shots into scenes. In [2], the keyframes of each shot are
merged in one large variable-size image, called the shot image,
and the similarity between blocks of different shot images is
evaluated for the purpose of establishing links between shots.
In [6], the similarity of shots is evaluated with the use of
features extracted from selected regions of the keyframes, and
editing rules from the film industry are also considered. Graph-
based approaches have also received significant attention. In
[5], pairwise color histogram similarities between keyframes
are used for building a STG. In [7], a weighted undirected
graph, with the weights expressing visual similarity and tem-
poral proximity, is constructed and iteratively segmented into
sub-graphs using normalized cuts [10]; another approach using
normalized cuts is proposed in [11]. In [9], a similar temporal
graph is constructed and an algorithm based on detecting short-
est paths in it is used for determining the scene boundaries.
In [8], a statistical approach, based on selecting an initial
set of arbitrary scene boundaries and updating them using a
Markov chain Monte Carlo technique, is presented. Finally,
in [12], shot grouping is conducted by spectral clustering,
without taking into account temporal proximity; the clustering
outcome is used for assigning labels to the shots, and a
sequence alignment algorithm is applied on the generated label
sequences for identifying the scene boundaries.

Although such unimodal techniques are usually sufficient
for clustering together shots characterized by pronounced
visual similarities [e.g., Fig. 2(a)], the same does not stand
true when the semantic relation between shots is indicated
only by other means, e.g., by audio [Fig. 2(b)]. To address
this shortcoming, the combined use of visual and audio cues
has been proposed. Audio features typically used to this end
include low-level ones such as short-time energy and zero-
crossing rate, as well as intermediate-level results from the
processing of the audio signal, such as audio segmentation,
speech detection, and background conditions classification. In
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Fig. 2. Six keyframes of shots that belong to the same scene and
(a) are characterized by pronounced visual similarities or (b) do not present
significant visual similarities, but a relation between them is indicated by
non-visual means (audio).

[13], an initial scene segmentation is performed using visual
features alone, and adjacent scenes are further merged on the
basis of low-level audio feature similarity. In [14], the video
is decomposed to visual shots and audio segments; audio and
visual segment boundaries are aligned to generate a set of
candidate scene boundaries, which are accepted or discarded
by further examining the audio changes. Similar in principle
approaches, based on aligning the boundaries of visual and
audio segments, are presented in [15] and [16]. In [17], scene
changes are detected by evaluating the audio dissimilarity of
adjacent shots only; a similar process is adopted in [18], where
the notions of visual and audio attention are used for guiding
the shot similarity evaluation. In [19], low-level color and
audio features, together with face detection results, are used
for computing a table of distances between the shots of a video
that is exploited for clustering, while a weighted combination
of audio and visual-similarity measures is used in [20]. In [21],
a fuzzy k-means algorithm is introduced to segment the audi-
tory channel into audio segments; scene breaks are identified
when a visual shot boundary exists within an empirical time
interval before or after an audio segment boundary. Learning-
based methods are presented in [22]–[24]. Reference [22]
proposed a statistical framework, which learns from a training
set the probability of different shot features taking specific
values on a scene boundary, and detects scene boundaries
at local maxima of the likelihood ratio curve. In [23] and
[24], audiovisual features are used as input to support vector
machine (SVM) classifiers, which are trained to differentiate
between two classes: scene-boundary and non-scene-boundary.

Common deficiency of the reviewed techniques is that they
rely mostly on low-level audiovisual features. Although these
are to some extent useful in evaluating the similarity of shots
for the purpose of grouping them, there is a gap between
the similarities that can be revealed by examining just low-
level properties of the audiovisual signal and the semantic
coherence that is desired of a scene. Another deficiency is
that the combination of audio and visual information, which
is evidently advantageous for scene segmentation, is typically
performed either in a simplistic manner (e.g., simple temporal
alignment of audiovisual segment boundaries) or with the use
of learning-based techniques. The latter usually require large
genre-specific manually segmented training sets.

B. Overview of the STG

In this section, a more detailed overview of the STG
is given, since STG serves as the basis of the proposed

approach. The STG is a technique introduced in [5]. It is an
elegant unimodal technique, exploiting the visual similarity
between keyframes of video shots to construct a connected
graph; the cut-edges of this graph constitute the set of scene
boundaries.

The STG construction starts with the generation of a seg-
mentation S of the video B to non-overlapping visual shots as
follows:

S = {xi}Ni=1 where xi = {fk}ei

k=bi
, bi < bi+1∀i

x1 ∪ x2 ∪ ... ∪ xN = B (1)

where fk is the kth frame of the video, and bi, ei are the
indices of the first and last frame of shot xi, respectively. Two
video shots are considered similar if they contain at least one
pair of similar frames according to similarity measure D(., .)
as follows:

D(xi, xj) = min
m,n

(
D′(fm, fn)

)

where

bi ≤ m ≤ ei and bj ≤ n ≤ ej. (2)

In this equation D′(fm, fn) is a measure of the similarity
of frames fm, fn; typically, low-level features such as color
histograms and distance measures such as L1 distance or
histogram intersection are used. Although the similarity of all
frames of both shots needs to be evaluated according to this
criterion, a set of selected keyframes is often used instead, for
reducing computational complexity.

The visual similarity values D(xi, xj) between each pair
of shots xi, xj in the video, providing that xi, xj are less
than an empirical time threshold τ apart, are calculated and
used for grouping shots that are similar (i.e., shots for which
D(., .) < Dt) into the same cluster. This clustering criterion
requires each shot to be similar to every other shot in the same
cluster. The order according to which the clustering proceeds
is specified by D(xi, xj); at any time, the most similar pair
of shots is examined before all less similar ones. From the
clusters and the temporal ordering of the shots, a STG is
constructed, where nodes represent the shot clusters and a
directed edge is drawn from a node to another if there is a
shot represented by the first node that immediately precedes
any shot represented by the second node. Finally, the “cut-
edges” of the graph are identified. A cut-edge is defined as an
edge which, if removed, results in two disconnected graphs.
The collection of all cut edges constitutes the set of scene
boundaries.

Among the advantages of the STG approach is that the
evaluation of shot similarity is not limited to pairs of adjacent
shots (thus, scenes characterized by repetitive patterns, such as
dialogs, can be detected correctly), in contrast to several other
unimodal or multimodal techniques. Among its disadvantages,
though, is that it exploits only low-level visual features,
it provides no support for combining heterogeneous feature
sets, and similarly to most literature approaches it requires
the heuristic setting of certain parameters (STG construction
parameters Dt and τ).
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III. Fast STG Approximation

The STG, as well as any other literature work reviewed
above, performs shot grouping into scenes by examining
whether a link exists between two shots; different criteria
are used in each work for identifying potential pairs of
shots (e.g., all shots lying within a temporal window) and
for evaluating the presence or not of such links (e.g., the
shots’ HSV histogram similarity lying below a threshold). In
this section, we use properties related to shot linking, such
as shot linking transitivity and the fact that scenes are by
definition convex sets of shots, to present an approximation
to STG-based scene segmentation. This approximation limits
the number of shot pairs whose possible linking needs to be
evaluated and simplifies or renders obsolete other processing
steps associated with the STG, thus allowing the faster detec-
tion of scene boundaries. The proposed approximation is not
guaranteed to produce the exact same results as the original
STG; nevertheless, the experiments in Section VI show that
the performance differences are very small.

A. Definitions

Following the definition of the scene as a LSU [2], any
scene segmentation process can be viewed as a clustering of
shots into non-overlapping convex sets. Let us remind that
in a totally ordered space, a set of points is convex if for
every pair of points that belong to it, all points in between
(according to the total order <o of the space) also belong
to it. The shots of a video can be seen as defining a totally
ordered 1-D space according to time, and scenes are indeed
non-overlapping convex sets in this space: if two shots xi, xj

belong to a single scene, then every shot xm, xi <o xm <o xj

also belongs to the same scene. The implication of this is
that, having established a definitive link between shots xi, xj ,
it is redundant to look for links between any shots xm, xn if
xi ≤o xm <o xn ≤o xj , because of the convexity of the set that
the link between shots xi, xj defines.

Considering the transitivity of shot linking, strictly speaking,
shot linking is not a transitive relation. This can be seen with
an example: assuming shots xi <o xm <o xj , D(., .) being a
shot similarity measure (e.g., HSV histogram difference) and
D(., .) ≤ a being the shot linking criterion, D(xi, xm) ≤ a and
D(xm, xj) ≤ a do not necessarily mean that D(xi, xj) ≤ a also
holds. However, viewing scene segmentation as the clustering
of shots into non-overlapping convex sets, D(xi, xm) ≤ a and
D(xm, xj) ≤ a means that xi, xm, xj all belong to the same
scene, and this is equivalent to establishing a shot link for the
pair (xi, xj). For this, we will treat shot linking as a transitive
relation in the sequel.

Based on the above considerations and assuming that a set
L comprising K linked pairs of shots, (xs1 , xe1 ), . . . , (xsK

, xeK
),

has been identified for a video B according to some linking
criteria, we proceed with the following definitions.

Definition 1: A link between shots xi and xj is called a
trivial link if there exists a (xsk

, xek
) ∈ L such that xsk

≤o xi

and xek
≥o xj .

Definition 2: Three shots xi, xm, xj are said to define a
trivial double link if both (xi, xm) and (xm, xj) belong to L.

Algorithm 1 Primary set estimation

1. Initially, all pairs of shots (xi, xj), xi <o xj , and i, j ∈
[1, N], are marked as valid pairs; any pair that is examined
in subsequent steps, and is not identified as linked, is
automatically marked as an invalid pair. d is set to N − 1
and i is set to 1.

2. d ′, d ′′ are set to zero.
3. If (xi, xi+d) is a valid pair, the presence of a link between

these two shots is examined. If it is an invalid pair or
no link is found: if i + d < N, this step is repeated after
setting i = i+1, otherwise is repeated after setting d = d−1
and i = 1. This continues until a shot link is found or d

becomes zero.
4. If pair (xi, xi+d) has been identified as linked, then starting

from d ′ = d and descending by step of one all valid pairs
(xi+d, xi+d+d′ ) are examined sequentially for shot links,
until a shot link is found or d ′ becomes zero.

5. If pair (xi+d, xi+d+d′ ) has been identified as linked, then
starting from d ′′ = d and descending by step of one all
valid pairs (xi+d+d′ , xi+d+d′+d′′ ) are examined sequentially
for shot links, until a shot link is found or d ′′ becomes
zero.

6. If pair (xi+d+d′ , xi+d+d′+d′′ ) has been identified as linked, d ′

is set equal to d ′ + d ′′ and step 5 is repeated (without
checking again if the condition of step 5 is satisfied); the
algorithm oscillates between steps 5 and 6 until no further
link can be found by these two steps.

7. If d �= 0, (xi, xi+d+d′+d′′ ) is added to the shot pairs that
belong to the primary set of links; all pairs of shots
(x, y), xi ≤o x, y ≤o xi+d+d′+d′′ are marked as invalid
pairs; i is set equal to i + d ′ + d ′′ + 1 [see Fig. 3(c)] and
the algorithm returns to step 2. If d = 0, the algorithm
terminates.

Definition 3: The set L is named primary if both no trivial
links and no trivial double links exist in it.

Examples of a trivial link and a trivial double link are
shown in Fig. 3. By introducing an algorithm that directly
produces a primary set of links, i.e., avoids examining the
existence of links that, given those already identified, would
be trivial, we can reduce the computational cost associated
with the detection of scene boundaries.

B. Shot Linking by Primary Set Estimation

Given the input video B that contains shots x1, x2, . . . , xN ,
as defined in Section II-B, a primary set of shot links can be
directly estimated according to Algorithm 1.

It is evident that following this algorithm, no pair of shots is
examined for the presence of a shot link more than once; also,
as soon as a shot link is found (step 3), shot pairs potentially
defining related trivial links are immediately excluded from
further consideration. Related double trivial links are then
looked for (steps 4–6) and, if found, are eliminated, further
increasing the number of shot pairs that are excluded from
subsequent processing. The resulting primary set of links L
essentially defines a STG, with the convex sets of shots defined
by the links in L serving as the nodes of the graph. With
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Fig. 3. Examples of trivial link, trivial double link, and illustration of a specific step of Algorithm 1. (a) If (xsk , xek
) ∈ L, the link between shots xi and xj is a

trivial link. (b) If (xi, xm) ∈ L and (xm, xj) ∈ L, shots xi, xm, xj define a trivial double link. (c) After Algorithm 1 finds and adds (xi, xi+d+d′+d′′ ) to the primary
set of links L, as a result of finding in steps 2–6 a sequence of potential trivial double links (xi, xi+d, xi+d+d′ ), (xi+d, xi+d+d′ , xi+d+d′+d′′ ), and so on, index i in
step 7 is set equal to i + d′ + d′′ + 1. In this way, Algorithm 1 then continues (going back to step 2) with examining whether pair (xi+d′+d′′+1, xi+d+d′+d′′+1) is
linked.

Fig. 4. Primary set of links L in tabular form, and example of browsing it so
as to fill-in the list of scene boundaries. (a)–(d) Different stages of browsing
the primary set of links.

respect to the maximum allowed temporal distance τ of linked
shots, which is a parameter of the original STG, this can be
integrated in Algorithm 1 simply by limiting accordingly the
number of shot pairs that are marked as valid pairs in the first
step of it.

Set L is parsed for detecting the scene boundaries as
follows: all shot pairs that belong to it are ordered in tabular
form, as shown in Fig. 4(a). Then, starting from the top-left
cell:

1) if the current cell [Fig. 4(a)] belongs to the left column,
we just move to one of the two neighboring cells
[Fig. 4(b)] that corresponds to the shot that appears
before the other one in B [according to the total order
<o, e.g., in Fig. 4(b), we will move to the xe1 cell if
xe1 <o xs2, otherwise we will move to the xs2 cell];

2) if the current cell belongs to the right column [Fig. 4(c)],
we move to the cell on the left column that is one row
below the current one [Fig. 4(d)] and shots xi of B that
lie in between the two cells considered in this step [i.e.,
in the example of Fig. 4(c), shots for which e1 ≤ i < s2]
are added to the scene boundary list.

When the bottom-right cell is reached, the scene boundary
list contains the last shot of each scene, i.e., the scene
boundaries.

C. Computational Complexity Analysis

The main processing steps of the STG method for detecting
scene boundaries and the corresponding steps of the proposed
approximation of it are summarized in Table I. This table
indicates that the proposed approximation is expected to
deliver significant gains in computational complexity, since in
it each main step of the STG is either simplified or becomes
obsolete.

Specifically, with respect to the calculation of visual similar-
ity values D(., .), the algorithm of the previous section refrains

from checking a number of shot pairs for possible links after
establishing a non-trivial link for shot pair (xsk

, xek
). Assuming

μk shots lie between shots xsk
and xek

, this means that shot
similarity measure D(., .) does not need to be computed for
(μk+2)(μk+1)

2 − 1 pairs of shots. For all K primary links in L,
the number of shot pairs for which D(., .) is not computed
rises to

∑K
k=1( (μk+2)(μk+1)

2 −1), out of the N(N−1)
2 possible pairs

of shots in B (assuming that τ → ∞). Consequently, the
proportional computational complexity gain G from the use

of the algorithm of Section III-B is G =
∑K

k=1
(μk)2+3

∑K

k=1
μk

N(N−1) .
This quantity is minimized when μk = μ, ∀k ∈ [1, K], thus a
lower bound for gain G is given by Gmin = μ(μ+3)K

N(N−1) . Assuming,
e.g., that out of N(N−1)

2 possible pairs of shots in B, non-trivial
links are established for 5% of them (i.e., K = 0.05N(N−1)

2 ) and
μ = 4, the lower bound for gain G is 70%. This gain persists
when additional limitations to the number of examined shot
pairs are introduced (e.g., by τ � ∞), providing that the non-
trivial links continue to represent a reasonable portion of all
the shot pairs that would otherwise be examined. Experiments
indicate that 70% is indeed a typical value for G; this alone
represents a speed-up by a factor of 3.

Considering the clustering of the shots, this step becomes
obsolete in the proposed algorithm, whereas in the STG
method this step involves, among others, the sorting of values
D(., .) that have been calculated for each possible pair of
shots. The latter process alone has average computational cost
proportional to � log �, where � denotes the number of shot
pairs (when τ → ∞, � = N(N−1)

2 ). Finally, the parsing
of the table of primary links, which is the last main step
of the proposed algorithm, has very low computational cost
(proportional to K, K being the number of primary links in L).
Although a direct theoretic comparison with the computational
cost of algorithms for graph parsing is difficult, due to the
different parameters affecting the latter (i.e., the number of
nodes and edges of the graph, rather than K), the proposed
parsing algorithm is intuitively expected to contribute to the
overall speed-up of scene boundary detection.

IV. GSTG Method

The STG method for scene segmentation, regardless of
whether the original algorithm of [5] or the fast approximation
of Section III are used, is a method exploiting only low-level
visual information for both the initial decomposition of the
video stream to elementary video segments (shots) and for the
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TABLE I

Main Processing Steps of STG and of the Proposed Fast Approximation of It

STG Fast STG Approximation
Calculates visual similarity D(., .) for every pair of shots that do not
exceed a specified temporal distance (τ).

Uses shot linking properties to further limit the number of shot pairs
for which D(., .) needs to be calculated.

Clusters the shots (Section II-B); this requires sorting the shot pairs
according to D(., .), and comparing the distances between all involved
shot pairs for merging two clusters.

This processing step becomes obsolete; the primary links detected at
the previous step directly define the shot clusters.

Parses the resulting graph (STG) to identify cut-edges. Parses a much simpler structure (a table, as in Fig. 4).

similarity-based linking of them. In this section, we introduce:
1) a unimodal extension of STG to non-visual input, and
2) a method for combining unimodal STGs toward multimodal
scene segmentation. Preliminary versions of these techniques
have been introduced by the authors in [25] and [26].

A. Unimodal Extension of STG to Non-Visual Input

Non-visual features, e.g., low-level audio features, speaker
diarization results, audio events, and others, can be used for
providing two kinds of information in relation to the goal
of video segmentation to scenes: 1) information about the
similarity of two elementary video segments (e.g., shots), so
as to allow for deciding whether the two segments are linked
on not, and 2) binary information about the potential of a
shot boundary to also be a scene boundary (i.e., allowed/non-
allowed). The first possibility comes from using the non-
visual features together with an appropriate similarity measure,
analogously to the use of measure D(., .) for low-level visual
features in the previous sections. The second possibility arises
from the fact that the extraction of non-visual features from the
audiovisual stream is typically accompanied by the definition
of an appropriate decomposition of the stream to elementary
segments. This decomposition in general does not coincide
with the decomposition of the video to shots, and cannot
be used by the STG in place of the latter, since this would
lead to possible violation of the basic assumption that scene
boundaries are a subset of the video’s shot boundaries. It
can however be used in combination with the decomposition
to shots for limiting the number of shot boundaries that are
treated as potential scene boundaries, with the help of simple
semantic criteria.

For example, when performing speaker diarization for the
purpose of describing each elementary video segment by a
speaker identity (ID), a speaker segmentation of the audio
stream is defined. The resulting speaker IDs can be mapped
to the video shots, so that each shot is described by the
histogram of speakers heard in it, and a suitable similarity
distance can be defined for these shot feature vectors. The
speaker segmentation of the audio stream can however provide
additional binary information about the potential of a shot
boundary to also be a scene boundary; the absence of a speaker
change across a shot boundary, e.g., could be used as evidence
that the two corresponding adjacent shots belong to the same
scene.

In order to exploit such decomposition-based information
when dealing with non-visual input, a few additional steps
are introduced to the STG construction algorithm. Denoting

Algorithm 2 Unimodal extension of STG to non-visual input

1. Adjacent segments of S′ are merged according to similar-
ity criteria set O, leading to segmentation S′

1.
2. The assumption that each segment of S′

1 can belong to
just one scene is adopted. Based on this, adjacent shots
of S are merged by eliminating shot boundaries that do
not correspond to segment boundaries in S′

1, resulting in
segmentation S1. Evidently, if S′

1 and S coincide (e.g.,
when considering visual features), this processing step has
no effect and S1 also coincides with S.

3. Each segment of S1 is described using appropriate features
(e.g., in the case of speaker diarization results, by mapping
speaker IDs to the segments of S1, so that each segment
is described by the histogram of speakers heard in it).

4. STG-based scene segmentation is performed (by means
of either the algorithm of Section III or that of [5]),
using segmentation S1 instead of S as a starting point and
replacing D(., .) with a similarity measure appropriate for
the considered features.

S the decomposition of video into shots and S′ the non-
visual decomposition of the audiovisual stream to elementary
segments, we proceed according to Algorithm 2.

In this extended algorithm, similarity criteria set O is used
for correcting any over-segmentation errors in S′, e.g., by
merging two adjacent speaker segments of S′ in case they
are both assigned to the same speaker. Thus, the criteria in
O are qualitative rather than quantitative and do not involve
any distance measures or thresholds. For the second step,
a temporal tolerance parameter is used when evaluating the
correspondence of shot boundaries in S and segment bound-
aries in S′

1, to prevent minor misalignments from triggering
the elimination of shot boundaries. Following this algorithm,
various different STGs can be constructed for a single video,
each based on different visual or non-visual features.

B. Combination of Unimodal STGs for Scene Segmentation

Despite the definition of the STG extension of Section IV-A,
which in place of the typically employed low-level visual
features can use different ones, the problem of combining mul-
tiple heterogeneous features remains. At the same time, it has
been experimentally found that regardless of the considered
features, the estimated scene boundaries depend significantly
on the value of parameters that are inherent to the STG
construction process, namely, the temporal distance τ and
the similarity threshold Dt . In order to combine multiple
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heterogeneous features for scene segmentation and simulta-
neously reduce the dependence of the proposed approach on
parameters, we propose a probabilistic technique that involves
the independent creation of multiple STGs of each type, where
a “type” means here an STG that uses a specific set of features
(e.g., just low-level visual ones). Specifically, following the
creation of multiple (P; P � 1) STGs of type y, using a
different set of randomly selected parameter values (τ, Dt)
for each of them, the scene boundaries according to each STG
(cut-edges) are extracted. Then, for every pair of adjacent shots
xi and xi+1, the number p

y
i of STGs that have identified the

boundary between these shots as a scene boundary divided by
the total number of generated STGs of this type is calculated
and used as a measure of our confidence on this shot boundary
also being a scene boundary, based on the features that
STG type y employs. The same procedure is followed for
all different types of STGs, i.e., for all different features.
Subsequently, these confidence values are linearly combined
to result in a cumulative confidence value pi as follows:

pi =
∑

y

wy · p
y
i (3)

where wy are global parameters that control the relative weight
of each type of STGs, i.e., of each type of features (

∑
wy = 1).

Finally, all shot boundaries (xi, xi+1) for which pi exceeds a
threshold as follows:

� = {(xi, xi+1)|pi > T } (4)

form the set � of scene boundaries estimated by the proposed
approach. The advantage of this probabilistic approach is that
multiple features are combined and at the same time the need
for experimentally setting STG construction parameters τ, Dt

is alleviated. Additionally, instead of introducing some feature
combination weights in D(., .), which would turn these into
difficult to optimize STG construction parameters, weights
wy that combine the results of already constructed STG are
introduced; these weights are easy to optimize using least
squares estimation (LSE). An illustration of the resulting
GSTG, using the four different sets of features introduced in
Section V, is given in Fig. 5.

V. Audiovisual Features for GSTG

In this paper, four different sets of features are combined
and evaluated as part of the GSTG method. Some of them have
been previously used for video segmentation to scenes, while
others are novel ones, at least with respect to their use in such
a task. Overall, the employed feature sets are: 1) typically used
low-level visual features (HSV histograms); 2) model vectors
constructed from the responses of a number of visual concept
detectors; 3) typically used audio features (background condi-
tions classification results, speaker histogram); and 4) model
vectors constructed from the responses of a number of audio
event detectors. For the above four feature sets, index y (3),
which denotes the type of constructed STGs according to the
features used for their construction, takes values V , VC, A,
and AE, respectively.

Fig. 5. Block diagram illustrating the GSTG, for the different types of
features/STGs used in this paper. The audiovisual stream is decomposed into
shots and audio segments, and different visual and audio features are extracted.
The features and the initial segmentation results are used to generate four
different types of STGs, whose results are subsequently merged according to
a probabilistic merging process in order to estimate the final scene boundaries.

A. Typical Visual Features

The HSV histograms of a few keyframes of each shot, or
very similar representations, have been extensively used in the
relevant literature (e.g., [5]) and are also used in this paper,
together with the L1 distance as a shot similarity measure
D(., .).

B. Visual Concept-Based Model Vectors

Model vectors are constructed from the responses of trained
visual concept detectors and are used in this paper as high-
level visual features. Model vectors were originally proposed
for the task of image and video retrieval [27], [28].

The visual concepts used in this paper are the 101 concepts
defined on the TRECVID 2005 dataset (made of Broadcast
News videos) as part of the Mediamill challenge [29]. These
concepts range from relatively abstract ones (e.g., “outdoor”)
to very specific ones, such as names of individuals that were
frequently in the news at that time (e.g., “B. Clinton”). Using
them and the training portion of the annotated TRECVID
2005 dataset, a concept detector is trained for each concept
separately. This detector combines a set of MPEG-7 features
(color structure, color layout, edge histogram, homogeneous
texture, and scalable color) [30] with a bag-of-words feature
vector with the use of SVM classifiers. More details on the
implementation of the concept detectors and the utilized visual
concepts can be found in [31].

The application of Jv different trained visual concept de-
tectors on a keyframe f of a shot results in Jv degree of
confidence values, which can be expressed as a vector φ(f )
as follows:

φ(f ) = [φ1(f ), φ2(f ), . . . , φJv
(f )]. (5)

This vector essentially represents keyframe f in the semantic
space defined by the Jv concepts. Subsequently, in order to
take into account the results of concept detection in more
than one keyframes per shot and also alleviate qualitative
differences between different detectors, the shot representation
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vector φ(x) is defined as follows:

φ(x) = [φ1(x), φ2(x), . . . , φJv
(x)], φγ (x) =

maxf∈x{φγ (f )}
maxf∈B{φγ (f )} .

(6)
The denominator in the second part of (6) denotes the max-
imum value of the γth concept detector across all keyframes
of the examined video.

The definition of a shot similarity measure using the model
vectors is based on the requirement that not only the difference
of values φγ (x) between two shots but also the absolute values
φγ (xi) and φγ (xj) themselves, should affect shot similarity.
The rationale behind this is that, for the γth detector, two
shots receiving similarly high confidence values is a strong
indication of their semantic similarity (i.e., they are both likely
to depict the γth concept). On the contrary, the same shots
receiving similarly low confidence values is an indication
neither in favor nor against their semantic similarity; it merely
suggests that the γth concept (out of a large number Jv of
concepts) is not depicted in either of the two shots. The
commonly used L1 or other Minkowski distances do not
satisfy the above requirement, since they depend only on the
difference of the values. Instead of it, a variation of the Chi-
test distance is employed in this paper, defined as follows:

D(φ(xi), φ(xj)) =

√√√√
Jv∑

γ=1

(φγ (xi) − φγ (xj))2

φγ (xi) + φγ (xj)
. (7)

It should be noted that the TRECVID 2005 dataset, on
which the visual concept detectors were trained, is a concept-
annotated dataset extensively used for concept detector train-
ing and evaluation, and it is completely unrelated to the two
test datasets used for experimentation in Section VI.

C. Typical Audio Features

Audio features typically employed for video segmentation to
scenes include low-level features (e.g., short-time energy, zero-
crossing rate) and somewhat higher-level ones (e.g., the results
of audio segmentation, background conditions classification,
speaker clustering, and others).

In this paper, we extract audio features by performing
audio segmentation, classification according to background
conditions, and speaker diarization [32], [33]. Background
classification considers three classes: noise, silence, and music.
Speaker diarization identifies speaker homogeneous segments
in the audio stream and further assigns a speaker identity to
each, after clustering them. The result of this process is the
partitioning of the audiovisual stream into audio segments,
each of which carries a background class label and, in case it
also includes speech, a speaker ID as well.

For exploiting these features, criteria set O (Section IV-A)
is defined as two adjacent audio segments sharing the same
background conditions and speaker ID labels; the feature
used for describing each segment of segmentation S1 (an
intermediate result of the algorithm of Section IV-A) is a
speaker identity distribution, defined as follows:

H(x) = [H1(x), H2(x), . . . , H�(x)] (8)

where x denotes in this equation a temporal segment of
segmentation S1 rather than an original shot in S, and � is
the total number of speakers in the video as per the speaker
diarization results. Hθ(x) is defined as the fraction of time that
speaker θ is active in video segment x over the total duration
of the same segment. Similarly to the HSV histograms, the L1
distance is used as a segment similarity measure D(., .).

D. Audio Event-Based Model Vectors

Audio events are the audio equivalent to visual concepts.
An audio event is defined as a semantically elementary piece
of information that can be found in the audio stream, such
as telephone ringing, dog barking, music, child voice, traffic
noise, and others. Audio events are detected with the use of
trained audio event detectors that rely on machine learning,
outlined as follows.

1) Classification using SVMs as described in [34] for 61
audio events, e.g., dog-barking, siren, applause, explo-
sion.

2) Classification using multilayer perceptrons or Gaussian
mixture models as described in [35] for 14 audio events,
e.g., male speaking, speech with noise background, and
music.

The complete list of considered audio events is given in
Table II.

Similarly to the way the results of visual concept detectors
are used in this paper, the responses of the audio event
detectors (confidence values for the presence of a specific
audio event in a given audio segment) are used to build audio
event-based model vectors as follows:

ψ(x) = [ψ1(x), ψ2(x), . . . , ψJa
(x)] (9)

where x denotes again a temporal segment of segmentation
S1, produced using the same criteria O as in the previous
Section V-C. For the reasons discussed in Section V-B, the
variation of the Chi-test distance introduced in (7) is also
used here for comparing audio segments according to their
audio event-based model vectors. Finally, it should be noted
that, similarly to the visual concept detectors, the audio event
detectors were trained on an annotated audio event corpus [34],
[35] completely unrelated to the two test datasets used for
experimentation.

VI. Experimental Results

A. Datasets and Evaluation Measures

For experimentation, two datasets were used in all experi-
ments, while a third one was additionally used in a few exper-
iments for showing the applicability of the proposed approach
to a certain type of news videos. The first dataset is made of
15 documentary films (513 min in total) from the collection of
the Netherlands Institute for Sound and Vision,1 also used as
part of the TRECVID dataset in the last few years. The second
one is made of six movies (643 min in total). Application of
the shot segmentation algorithms of [36] and [37] (for abrupt

1http://instituut.beeldengeluid.nl.
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TABLE II

List of Audio Events

Airplane engine jet Wolf/coyote/dog howling Car Animal hiss Morse code Typing Male voice
Baby whining or crying Telephone ringing digital Bear Bell electric Frog Saw manual Rattlesnake
Bell mechanic Non-vocal music Big cat Crowd applause Music Thunder Insect buzz
Bite chew eat Noise background Bus Buzzer Speech Pig Horse walking
Airplane engine propeller Voice with background noise Cat meowing Donkey Vocal music Helicopter Train
Child voice Telephone ringing bell Cow Child laughing Paper Saw electric Hammering
Clean background Telephone band Birds Wind Sheep Gun shot heavy Water
Digital beep Voice with background music Dog barking Dolphin Siren People talking Glass
Chicken clucking Walk/run/climb stairs (soft) Female voice Drink Whistle Fireworks Traffic
Elephant or trumpet Walk/run/climb stairs (hard) Electricity Explosion Motorcycle Insect chirp Fire
Door open or close Gun shot light Horn vehicle Music background Moose or elk or deer

and gradual transition detection, respectively) to these datasets
resulted in 3459 and 6665 shots; manual grouping of them to
scenes resulted in 525 and 357 ground truth scenes. For each
of these two datasets, one additional video of the same genre
(one documentary, one movie) was processed in the same way
(shot segmentation, manual grouping of the shots to scenes)
and was used for automatically adjusting the parameters of
the algorithm [weights wy and threshold T in (3) and (4),
as well as optimal number of employed visual concept and
audio event detectors] in the relevant reported experiments.
The third, smaller, dataset was generated with the purpose
of simulating unedited news video content; this was done by
concatenating several news-related videos from YouTube into
three 1-h-long videos. The number of automatically detected
shots and manually identified ground truth scenes in the latter
dataset was 1763 and 57, respectively.

For evaluating the results of the scene segmentation ex-
periments, the Coverage (C), Overflow (O), and F-Score
(F ) measures were employed. Coverage and Overflow were
proposed in [38] for scene segmentation evaluation; Cover-
age measures to what extent frames belonging to the same
scene are correctly grouped together, while Overflow evaluates
the quantity of frames that, although not belonging to the same
scene, are erroneously grouped together. The optimal values
for Coverage and Overflow are 100% and 0%, respectively.
The F-Score is defined in this paper as the harmonic mean of
C and 1 − O, to combine Coverage and Overflow in a single
measure, F = 2C(1−O)

C+(1−O) , where 1 − O is used in this formula
instead of O to account for 0 being the optimal value of the
latter, instead of 1.

B. Experimental Upper Bounds of Performance

A first series of experiments was carried out with the
GSTG method, using those GSTG parameter values that
were determined by exhaustive search as being the ones that
maximize the F-Score attained for each test dataset. This was
done for experimentally estimating an upper bound for the
performance of GSTG when different audiovisual features or
combinations of them are used. It is reminded that parameters
of the GSTG method are the weights wy and threshold T in
(3) and (4); the number of employed visual concept and audio
event detectors, assuming that we consider the possibility of
using just a subset of those defined in Section V, is also
treated as a parameter in this series of experiments. In this

and all subsequent series of experiments, in any case where
the use of keyframes was required, three keyframes per shot
were used. The number P of STGs of each type that were
constructed using randomly selected parameters τ and Dt was
set to 1000, with the randomly selected values of τ being in the
range [0, 5000] (measured in frames) and of Dt in the range
[0, 0.2] or [0, 0.4], depending on the type of STGs. Random
selection was implemented with the use of simple random
number generators.

The results of GSTG are shown in Table III. The first
column (“Index y”) indicates the types of STGs that contribute
to GSTG in each experiment. The Coverage, Overflow, and
F-Score columns report the results of GSTG when the algo-
rithm of [5] is used for individual STG construction, while the
F-Score values in parentheses correspond to the case where
the fast approximation of Section III is used instead, as part
of GSTG. In the first experiment, e.g., y ∈ {V } indicates that
only the typical visual features of Section V-A are employed;
thus, the resulting method essentially resembles the original
STG method of [5], integrating however the probabilistic tech-
nique introduced in Section IV-B that alleviates the need for
experimentally setting STG construction parameters τ, Dt . In
subsequent experiments of this series, STGs constructed with
the use of visual concept-based model vectors (VC), typical
audio features (A), and audio event-based model vectors (AE),
as well as combinations of them, contribute to GSTG. It can
be seen from this table that, among individual features (first
four rows of the table), the use of the typical visual features
results in the highest F-Score. Considering the cases where
two or more types of STGs contribute to GSTG, however,
it is clear that the {V, VC} combination performs better than
{V } and the {A, AE} combination performs better than {A}.
Further combining visual and audio features (y ∈ {V, VC, A}
and y ∈ {V, VC, A, AE}) leads to additional gains; the
F-Score attained by the GSTG when all audiovisual features
of Section V are employed is about ten points higher that
that of y ∈ {V }. The conclusion here is that, providing that
good GSTG parameter values can be determined, the GSTG
can effectively use any single one of the considered audiovi-
sual features toward improved performance, and the observed
performance improvements are significant in both examined
datasets. Furthermore, the use of the fast approximation of
Section III instead of [5], as part of GSTG, results in only
small F-Score degradation (in most cases, F-Score differences
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TABLE III

GSTG Performance, Using GSTG Parameter Values That Were Determined by Exhaustive Search As Being the Ones That Maximize

the F-Score Attained for Each Test Dataset

Documentary Dataset Movie Dataset
Index y (Types of STGs in GSTG)

{V }
{VC}
{A}

{AE}
{V, VC}
{A, AE}

{V, VC, A}
{V, VC, A, AE}

Coverage (%) Overflow (%) F-Score (%)
78.33 19.06 79.61 (78.17)
75.66 31.19 72.07 (71.21)
68.58 27.59 70.44 (70.63)
72.24 34.78 68.55 (68.75)
80.60 14.71 82.91 (81.57)
70.10 15.46 76.65 (75.97)
85.48 12.28 86.59 (86.42)
87.35 9.37 88.96 (88.34)

Coverage (%) Overflow (%) F-Score (%)
74.49 24.11 75.18 (74.21)
65.78 17.73 73.11 (71.63)
62.33 45.51 58.15 (57.40)
60.28 37.21 61.51 (61.42)
71.96 8.51 80.56 (80.32)
66.16 32.78 66.69 (66.12)
81.89 15.60 83.13 (83.47)
89.27 17.02 86.01 (85.55)

of < 1%) in return for major computational efficiency gains
(Section VI-F). These F-Score differences translate to an
increase of the number of true scene boundaries that are not
detected by less than 1%.

C. Impact of Parameters on Performance

Having examined the performance of GSTG when using
“good” GSTG parameter values, we then examined the impact
of each of these parameters separately. Starting with the num-
ber Jv of visual concept detectors that are taken into account
(5), experiments were carried out with it varying from 10 to 90
with a step of 10; the use of all 101 visual concept detectors
was also examined. Assuming that, when selecting a subset
of the available detectors, it makes sense to select the best Jv

detectors out of all the available ones, two different “goodness”
criteria were used for the detectors: average precision (AP)
and delta average precision (
AP) [39]. Both AP and 
AP

for the trained concept detectors were those calculated on the
test portion of the TRECVID 2005 dataset (Section V-B). The
results presented in Fig. 6 indicate that when y ∈ {VC}, higher
Jv values generally lead to higher F-Score. When considering
combinations of features, though, Jv values between 40 and
80 lead to the best results, using additional concept detectors
leads to slight performance decrease. A possible explanation
of this is that even poorly performing concept detectors tend
to produce similar responses for “similar” keyframes (if not
semantically similar, at least visually similar). Thus, in the
absence of other features, such concept detectors provide some
useful information to the scene boundary detection algorithm,
besides introducing noise due to their poor performance in de-
tecting specific concepts. When used in combination with other
features, though (specifically, low-level visual features), visual
similarity can be reliably estimated from the latter features,
and the poorly performing concept detectors seem to only
introduce additional noise to the representation of the shots.
This noise is responsible for the slight decline of the F-Score
when increasing the value of Jv beyond an optimal one. In
the above cases, selecting the detectors according to 
AP is
advantageous, compared to using AP , although the differences
between the two are generally small (< 1% in F-Score). What
is most interesting though is that regardless of the value of
Jv, y ∈ {V, VC} consistently performs better than the baseline
y ∈ {V }. Furthermore, when additional features are introduced

(y ∈ {V, VC, A}, y ∈ {V, VC, A, AE}), the F-Score curves as
a function of Jv tend to become more flat, i.e., although {VC}
introduces significant performance improvement (particularly
for the Movie dataset), GSTG is rather insensitive to the
number of employed visual concept detectors.

A similar study of the number Ja of employed audio event
detectors was also carried out, with Ja ranging from 20 to
60 with a step of 10; using all 75 audio events of Table II
was also examined. The F-Score of each individual audio
event detector, calculated on the test portion of the audio
event corpus (Section V-D), was used as a detector goodness
criterion. The results, shown in Fig. 7, are similar to those for
the visual concept detectors that were discussed above.

Finally, regarding the impact of weights wy and threshold T

when y ∈ {V, VC, A, AE}), results from varying each of wVC,
wA, wAE, and T separately are shown in Fig. 8. In varying the
weights, wV was set equal to 1 − wVC − wA − wAE; thus, in
Fig. 8(a), wVC varies from 0 to 100% of its maximum allowed
value, the latter being the one that would make wV equal to
0 for the given (constant) values of wA and wAE, similarly
for wA and wAE in Fig. 8(b) and (c), respectively. The results
indicate that GSTG is not very sensitive to the values of
weights wy, since in all cases there is a relatively large range
of weight values that result in close-to-maximum F-Score, and
no abrupt changes in F-Score for small changes in a weight
value are observed. Threshold T [Fig. 8(d)] is shown to have
a more significant impact on F-Score, which was however
expected, considering that its minimum and maximum values
practically mean that all and no potential scene boundaries,
respectively, are accepted as scene boundaries. Even for T ,
though, there is a relatively large range of values that result
in close-to-maximum F-Score.

D. Results Using Automatically Determined Parameters and
Comparison with Literature Works

An advantage of the GSTG approach, discussed in Sec-
tion IV-B, is that weights wy of GSTG are not hard-to-optimize
STG construction parameters; on the contrary, they can be
easily optimized using LSE. In this section, we repeat the
series of experiments of Section VI-B, using however the
single out-of-testset video for each dataset that was mentioned
in Section VI-A in order to automatically select the values
of weights wy as well as all other GSTG parameters (T , Jv,
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Fig. 6. F-Score as a function of the number Jv of visual concept detectors. (a) Documentary dataset, concepts selected according to AP . (b) Documentary
dataset, concepts selected according to 
AP . (c) Movie dataset, concepts selected according to AP . (d) Movie dataset, concepts selected according to 
AP .

Fig. 7. F-Score as a function of the number Ja of audio event detectors. (a) y ∈ {AE}. (b) y ∈ {V, VC, A, AE}.

Ja). For weights wy, LSE estimation is employed. Specifically,
a value of 1 is assigned to each shot boundary of the out-
of-testset ground-truth-segmented video that is also a scene
boundary, according to the ground-truth segmentation, and a
value of 0 to each other shot boundary. LSE estimates the
weights wy that minimize the sum of differences between the
aforementioned values and pi (3) for this video. Threshold T

is then set to the value that maximizes the F-Score attained for
the same out-of-testset video, given the estimated weights; this
value is determined by simple exhaustive search. Finally, the
above optimization process is repeated for different selected
values of Jv and Ja (the same few values used for plotting
Figs. 6 and 7), and the set of parameters that leads to the
maximum F-Score for the out-of-testset video is chosen. Al-
though this may not be the most elegant optimization process
possible, it is a simple one that requires use of just one

out-of-testset ground-truth-segmented video for automatically
estimating all parameters of GSTG. The results of using the
estimated parameters on the test datasets are reported in the
first part of Table IV. Again, the Coverage, Overflow, and
F-Score columns report the results of GSTG when the algo-
rithm of [5] is used for individual STG construction, while the
F-Score values in parentheses correspond to the case where
the fast approximation of Section III is used instead, as part
of GSTG. It can be seen that, in comparison to the results
of Table III, the F-Score in almost all experiments has only
been slightly reduced (F-Score differences of approximately
1%). The F-Score attained by the GSTG when all audiovisual
features of Section V are employed continues to be about ten
points higher that that of y ∈ {V }, and every one of the 4
examined types of features is shown to have a non-negligible
contribution. The conclusion here is that automatic selection
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Fig. 8. F-Score as a function of weights wy and threshold T . (a) F-Score versus wVC . (b) F-Score versus wA. (c) F-Score versus wAE. (d) F-Score versus T .

of GSTG parameter values using a simple procedure and a
single out-of-testset video of the same genre is sufficient for
getting very close to the upper performance bounds identified
in Section VI-B.

For the purpose of comparing the proposed GSTG method
with additional methods of the literature, besides the STG
[5] (whose results, when it also exploits the probabilistic
technique introduced in Section IV-B, are essentially those
reported above for y ∈ {V }), three additional methods are
tested and their results are also reported in Table IV. These are
the very recent unimodal method of [12], which is based on an
elaborate sequence alignment technique, and the multimodal
methods of [21] and [24], which similarly to GSTG combine
visual and audio features. The latter method [24] is based
on a discriminative classifier (SVM) that realizes early fusion
of the audio-visual features. For ensuring a fair comparison,
the same keyframes, audio segmentation results, and high-
level audio features (where applicable) that are used by the
proposed approach were also used when experimenting with
these three methods. It can be seen from the reported results
that the GSTG method significantly outperforms [12], [21],
and [24]. These performance differences are caused by the use
of a wealth of low-level and high-level audiovisual features in
the proposed approach, as opposed to just low-level features
being used in [12] and [21]. The proposed probabilistic
merging process that effectively combines these features also
contributes to improved performance, in comparison to simpler
heuristics used in [21] for audiovisual feature combination, and
also in comparison to early fusion of low-level and high-level
audiovisual features used in [24].

Finally, in the last row of Table IV, results of the GSTG
are reported for the case that the weights wy and all other
GSTG parameters are automatically selected with the use of an
out-of-testset ground-truth-segmented video that belongs to a
different genre (i.e., one documentary video is used for esti-
mating the GSTG parameters for the movie dataset, and simi-
larly one movie video is used for the documentary dataset). For
both datasets, this cross-genre automatic parameter selection
results in F-Score differences of < 0.5%, compared to using
a same-genre video for this task. These results complement
our previous findings about the insensitivity of the proposed
technique to parameters (Section VI-C), and indicate that the
GSTG can in practice be applied to different video genres
without using even one manually segmented video of the same
genre, with minimal performance loss.

E. Applicability of GSTG to News Videos

In order to discuss the applicability of the GSTG approach
to different video genres, most notably news-related videos,
we first need to make the distinction between two broad
types of video content: loosely structured content and tightly
structured one. We use the term “tightly structured content”
here to denote content that is known to follow a very specific
structure. Examples of such video are the news bulletins of
a single broadcaster; they tend to follow a structure that is
characteristic of the broadcaster, e.g., each scene starts with
one anchor-person shot and is followed by external reporting
shots. On the contrary, video genres such as documentaries,
movies, unedited news-related video, and others, do not
observe such strict structuring rules, and consequently fall
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TABLE IV

GSTG Performance, Using GSTG Parameter Values That Were Automatically Estimated with the Use of an Out-of-Testset

Ground-Truth-Segmented Video, and Comparison with Literature Works [12], [21], [24]

Documentary Dataset Movie Dataset
Index y (Types of STGs in GSTG)

{V }
{VC}
{A}

{AE}
{V, VC}
{A, AE}

{V, VC, A}
{V, VC, A, AE}

Coverage (%) Overflow (%) F-Score (%)
76.96 20.80 78.06 (77.10)
76.37 35.37 70.01 (70.53)
68.52 28.44 70.01 (68.50)
63.81 28.47 67.45 (67.47)
83.29 18.42 82.43 (81.32)
70.96 21.18 74.68 (74.41)
85.44 16.77 84.32 (84.71)
86.30 10.91 87.67 (87.40)

Coverage (%) Overflow (%) F-Score (%)
73.55 26.11 73.72 (72.81)
71.20 25.68 72.73 (71.36)
59.64 44.79 57.34 (57.31)
62.14 40.97 60.55 (60.68)
80.62 20.93 79.84 (80.30)
66.49 34.42 66.03 (65.18)
84.77 19.32 82.67 (81.70)
87.91 17.89 84.91 (84.64)

Method
GSTG (y ∈ {V, VC, A, AE})

Method of [12]
Method of [21]
Method of [24]

Coverage (%) Overflow (%) F-Score (%)
86.30 10.91 87.67 (87.40)
70.90 24.13 73.30
77.59 17.31 80.06
78.22 16.73 80.67

Coverage (%) Overflow (%) F-Score (%)
87.91 17.89 84.91 (84.64)
76.43 16.15 79.97
75.12 24.29 75.41
79.50 21.17 79.16

GSTG (y ∈ {V, VC, A, AE})
+ Cross-genre parameter selection

Coverage (%) Overflow (%) F-Score (%)
85.93 11.40 87.24 (87.22)

Coverage (%) Overflow (%) F-Score (%)
87.52 18.17 84.58 (84.37)

under the category of loosely structured content. In the case
of tightly structured content, it is evidently advantageous to
develop dedicated methods that exploit the knowledge about
the content’s structure (thus focusing, e.g., on detecting the
anchor-person shots that may signify a scene change). The
GSTG approach, on the contrary, similarly to most literature
works, is a generic approach that does not make any restrictive
assumptions about the structure of the video, thus is mostly
suited for processing loosely structured content.

For examining how the GSTG performs on news-related
content falling under the latter category, we used the third
dataset defined in Section VI-A, which simulates unedited
news video content. Application of GSTG to it (with the fast
STG approximation of Section III being used as part of GSTG:
y ∈ {V, VC, A, AE}) and looking for the experimental upper
bounds of performance (as in Section VI-B) resulted in F-
Score equal to 78.76%; automatically determining the GSTG’s
parameters resulted in F-Scores equal to 77.91% and 77.83%,
when a documentary and a movie were used for cross-genre
parameter selection, respectively (as in the last paragraph of
Section VI-D). In comparison, the F-Scores for the literature
works [12], [21], [24] were 75.97%, 75.09%, and 75.19%,
respectively.

F. Computational Efficiency

Concerning the computational efficiency of the GSTG ap-
proach, this is experimentally shown to be high. Specifically,
excluding the pre-processing of the audio-visual stream (e.g.,
shot segmentation) and feature extraction, the GSTG approach
is faster than real-time (approximately 60 f/s) on an 3.0 GHz
personal computer, considering y ∈ {V, VC, A, AE} and em-
ploying the method of [5] for individual STG construction.
When, instead of the latter, the fast STG approximation
introduced in this paper is used as part of GSTG, the frame
processing rate rises to over 1200 f/s, representing a speed-up

by over 20 times. As a result, the processing time for a 90-min
film (featuring 25 f/s) is reduced from about 40 min to less
than 2. The pre-processing and feature extraction processes
excluded from the aforementioned time measurements clearly
introduce some additional computational overhead; neverthe-
less: 1) some of these processes (e.g., shot segmentation) are
common to all scene segmentation methods; 2) other processes
(e.g., concept detection) are typically performed on the video
as part of its semantic analysis, and re-using their results
also for the purpose of scene segmentation does not introduce
additional computational cost; and 3) real-time or near-real-
time implementations for all of them generally exist (even for
concept detection, e.g., [40]).

VII. Conclusion

In this paper, a novel multimodal scene segmentation
method, making use of high-level audiovisual features, was
presented. As part of this method, algorithms were developed:
1) for a fast STG approximation; 2) for extending the STG so
as to exploit non-visual input; and 3) for effectively combining
STGs that were constructed with the use of different features,
possibly coming from processing different modalities of the
audiovisual stream. New high-level features, such as model
vectors constructed with the help of large numbers of trained
visual concept detectors or audio event detectors, were pre-
sented and were exploited by the proposed multimodal scene
segmentation method. For training these detectors, existing
annotated corpora were employed; these were unrelated to
the datasets used for experimentation in this paper, thus not
leaving room for any doubts on the usefulness of the model
vector-based features on different datasets. The experimental
results revealed the merit of the developed algorithms and doc-
umented the significance of introducing high-level audiovisual
features in the scene segmentation task.
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