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ABSTRACT 

 

Multilevel biological data for different cellular systems are accumulating at a day basis 

speed. High-quality time series of gene expression, metabolite concentrations or enzyme 

activities now add to the steady-state data gathered in the last decades of molecular biology. 

Mathematical modeling plays a fundamental role in understanding these experimental data by 

providing structured abstractions that represent the underlying biological processes at 

different simplification levels. Power-law modeling within Biochemical Systems Theory (BST) 

has been used thoroughly in the last decades within this context. Despite of its attractiveness 

as an approximate modeling tool, problems still exist at the level of parameter identification in 

order to achieve a compromise between data description and model predictive properties.  

This problem has been traditionally tackled through optimization routines that cannot always 

guarantee the right solution or that become computationally expensive when systems grow in 

size, therefore lacking scalability. 

This report reviews recent methodological proposals to deal with the problem of 

parameter estimation in models of biological systems based on BST, whether in its S-System 

formalism or in the GMA alternative. These approaches have made significant contributions to 

the decrease in computational power required in the estimation procedure as well as to the 

reliability of the parameter solutions. Nevertheless an ideal method that can be applied to 

different problems and datasets, if it exists, is still far from being found. 

This work was performed at the Knowledge Discovery and Bioinformatics (KDBIO) 

group from INESC-ID, Lisboa under the framework of project DynaMo - Dynamical modeling, 

control and optimization of metabolic networks funded by FCT (PTDC/EEA-ACR/69530/2006) 

and under PhD fellowship SFRH / BD / 33209 / 2007 (FCT) associated to the PhD Program in 

Computational Biology from Instituto Gulbenkian de Ciência (sponsored by FCG, FCT, Siemens 

SA). 
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1. INTRODUCTION 

 

1.1. Biochemical Systems Modeling  

 

The emergence of high-throughput technologies for producing biological data (such as 

microarrays, mass spectrometry or in vivo NMR) drove biology to a situation where describing 

the cellular status is possible at physiological, metabolic, proteomic and genomic levels. 

Unraveling how these multiple cell layers interact to produce different phenotypes is now one 

of the most challenging topics in modern biology and one that demands a systems approach. 

However, in contrast to what was traditional in the decades of molecular biology it has now 

become humanly unfeasible to scrutinize these massive amounts of data without resourcing to 

bioinformatics and computational methods. In this context, mathematical modeling emerged 

as a fundamental tool for understanding biological phenomena by providing structured 

abstractions to rationalize complex cellular behaviors. The iterative model building process 

coupled to validation with high-quality experimental data has brought new insightful views of 

cell processes.  

Time series profiles, that is, measurements of quantities such as gene expression, 

enzyme activities or metabolite concentrations through time, allow describing dynamic 

responses of cells under well-defined experimental conditions, and thus are particularly 

interesting for this purpose because they unravel the biological networks that give rise to 

those responses and how they are intermingled. Experimentally time-series profiles can be 

obtained by imposing a controlled perturbation to a stationary system, and recording the 

output response of the system. From a modeling perspective, deterministic models can be 

built that describe the time-evolution of the system from a given initial condition upon some 

input perturbation. These models are considered valid when a high number of biochemical 

molecules is present in the cell; otherwise stochasticity should be taken into account. 

At any time-point t, the state of the system is then described by the state-vector 

( ) ( ) ( ) ( )( )1 2
, , , , , , ,nt X t X t X t=X p p p pK . For biological systems the state-variables Xi 

typically represent the concentrations of biochemical species which are both time and 

parameter dependent. The vector p contains all unknown parameters of the system. 

The model is then built in the form of a set of ordinary differential equations (ODEs) 

such as in Equation 1. 

( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

0 0

,
, , , , , ,

, , , , ,

d t
f t t t t

dt

t g t t t

= =

=

X p
X p p u X p X p

y p X p p u
  [1]

 

where, u(t) are input signals, f is a given vector function and y(t,p) represents the 

vector of observed variables. 
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For the formulation of mathematical models of biochemical systems the vector-valued 

function f described in Equation 1 needs to be defined. Traditionally it has been built in a 

bottom-up or mechanicistic approach: information on individual processes and their 

interactions is gathered and a comprehensive model is then integrated. As an example, mass 

action kinetics or Michaelis-Menten kinetic rates and their variants are commonly used to 

describe the different cell processes. Nevertheless, besides being greatly influenced by the 

wealth of detailed information available, these approaches often become too complex for 

algebraic manipulation as networks grow in size. 

Alternatively, approximate formalisms have received increasing attention in the last 

years because they provide approximations to the kinetic law valid in the neighborhood of a 

specified operating point without prior assumptions on the mechanistic aspects of the 

underlying processes. From these the log(linear) and lin-log approximations (refer to (Heijnen 

2005)) and the power-law framework stand in the front-line. The recently proposed Saturable 

and Cooperative formalism (Sorribas and others 2007) also presents promising results as a new 

tool that allows a structured formalism for approximating fluxes that show sigmoidal 

dependencies on the metabolites. 

This report focuses on the Power-law framework both in its S-System and GMA 

formats, because it has proven to be flexible enough to capture the characteristic 

nonlinearities of biological networks. Furthermore it has the advantage that its parameters can 

be readily interpreted in terms of topological and regulatory features of the network as well as 

the order of the reactions involved in the system (Savageau 1976; Voit 2000; Voit and 

Savageau 1987). 

 

1.2. The Power-Law Framework under Biochemical Systems Theory (BST) 

The Power-Law framework within Biochemical Systems Theory (BST) (Savageau 1976; 

Voit 2000; Voit and Savageau 1987) is derived by approximating a kinetic rate-law around a 

defined operating point through first-order Taylor series truncation, under logarithmic 

coordinates. This corresponds to a product of power-laws when reverting to Cartesian space. 

For a biochemical system with n dependent variables and m independent variables a power-

law approximation of a given rate 
r

v has the form represented in Equation 2. 

[2]

 

where 
r

γ is a non-negative kinetic rate (also known as the turnover rate of the 

process), and 
rjf is the apparent kinetic-order of the process 

r
v  with respect to 

jX . This 

kinetic order is equivalent to the local sensitivity or elasticity coefficient in the Metabolic 

Control Analysis framework (Cascante and others 1995; Curto and others 1995; Fell 1997; 

Sorribas and others 1995). 

1

rj

n m
f

r r j

i

v Xγ
+

=

= ∏
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From the model building perspective, two different strategies have been used within 

BST. These are the S-System and the Generalized Mass Action approaches which both rely on 

the power-law approximation but making slightly different considerations on the system’s 

operation. 

1.2.1 The S-System Modeling Framework 

The S-System framework within BST focuses on the constituent pools, aggregating all 

influxes (or effluxes) into a given pool described by a single power-law term. Thus, for a 

biochemical system having n constituents, the generic form of an S-System is as follows in 

Equation 3: 

��� =  �� ∏ ��	
���
� − �� ∏ ���
���
�  with  � = 1,2, … , �      [3] 

where ��  denotes the concentration of constituent i. Its time derivative ��� is expressed as the 

difference between a production term and a degradation term. These two terms are products 

of power-law functions and contain two different types of parameters: the non-negative rate 

constants � and � relative to metabolite ���, that quantify the turnover rate of each process 

with magnitude depending on the scales of the system, and the real-valued kinetic orders g 

and h, which can be directly interpreted as the kinetic orders of the corresponding chemical 

reactions. However they cannot be seen as stoichiometric coefficients anymore, but rather as 

a measure of the influence of a particular component in the rate of the process.  Negative 

kinetic orders reflect inhibitory effects while their magnitude quantifies the strength of the 

effect. A kinetic order of zero corresponds to no direct effect. Therefore, the structure of the 

network can be inferred in a straightforward fashion if the parameter values of the S-System 

are known. 

 The particular S-System structure also allows a straightforward steady-state analysis 

(by setting Equation 1 equal to zero) through the determination of explicit steady-state 

solutions relating the system’s fixed points with its internal parameters.  

 

1.2.2. The GMA Modeling Framework 

In the GMA formulation, each reaction having a direct effect in the process is 

considered independently and thus no flux aggregation occurs. Instead, each flux is individually 

linearized in logarithmic coordinates, which in Cartesian coordinates corresponds to a product 

of power-law functions that contains those and only those variables that directly affect the 

flux, raised to an exponent – its kinetic order. The product also contains a positive rate 

constant that determines the magnitude of the flux or speed of the process. The mathematical 

formulation of any GMA model is thus as follows in Equation 4: 

��� = ∑ ± ��� ∏ ���
����
��
�
�   with  � = 1,2, … , �      [4] 

where 
ipγ   is the rate constant of the process and 

ipjf  its kinetic order. In this case, the 

number of reactions per differential equation may be different for each species.  
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In mathematical terms the GMA representation can be seen as a generalized 

formalism that includes S-Systems (GMAs with at most one positive and one negative term – 

aggregating individual fluxes into the net processes of production and consumption), linear 

stoichiometric models, and combinations of both. Here lies one of the main advantages of 

GMA formalism over S-Systems: in the latter, if one of the contributing fluxes is null, all the 

pool influx will be set to zero due to the power-law products involved. However this flux 

aggregation in S-Systems allows their closed-form steady state solutions that cannot be 

derived for GMAs. Furthermore, S-Systems are more amenable to a black-box approach where 

no information about the topology is available, since the structure is always the same, 

independently of the specific reactions present. Another important difference to point out 

when trying to estimate model parameters is that, given the dimension of the system, S-

Systems have a bounded number of possible parameters to be recovered, 2n(n+1), whereas 

this is not the case for GMA systems. Thus estimating which parameters are zero-valued 

(which variables have no direct effect in the processes) is of particular importance when using 

this formalism – and having a priori information on the network topology can greatly facilitate 

the estimation task. 

 

1.3.  Optimization methods as tools for reverse modeling 

In this top-down approach most of the times the system is treated as a black box to 

which a stimulus is applied. If we record measurements of the output response (in the form of 

time series) we can try to fit a mathematically structured model to the data using some 

optimization algorithm, in a reverse modeling problem. For a given set of experimental 

measurements ( ),i it≡y y p  available at discrete time points ti, i =1,…,N, the general reverse 

modeling problem can be stated as to find the parameter set p̂  that minimizes a chosen 

evaluation function  quantifying the distance between the experimental data and the solutions 

resulting from integrating the system in Equation 1 (typically in the least-squares sense). This 

problem can be dealt with optimization routines that search the whole parameter space while 

trying to minimize the evaluation function. 

The optimization task can be considered at the moment the major bottleneck in the 

whole modeling process and the criticality of this step has been generally underestimated. The 

a priori available information on the system sets the difficulty of the optimization problem: if 

the topology and regulatory interactions are known, the problem reduces to a parameter 

estimation task; in the other extreme, if no information exists, the more difficult problem of 

network structure inference is posed. The main difference between both problems is the 

higher dimensionality of the parameter space to search when inferring structure.  

This inverse problem should be simple if a suitable model is given.  But despite of the 

huge increase in the amount and quality of the available data, the task of extracting significant 

information from it has not revealed to be straightforward. Difficulties exist both at the 

conceptual and at the computational levels. For instance, the choice of mathematical 

framework must ensure that the dynamics are captured with sufficient accuracy but still 

allowing the biological interpretation of parameters. Since S-Systems are intrinsically non-



8 

linear, estimating their parameters is basically to numerically solve a system of non-linear 

differential equations and this is a difficult and computationally expensive task – unsuccessful 

optimizations may occur due to trapping of the search algorithm in local minima of the 

parameter space, lack of convergence or even a convergence speed that becomes unfeasible 

for large systems.  

The standard search algorithms for overcoming these drawbacks have been gradient 

based non-linear regression, like the Newton (e.g (Seber and Wild 2003)) or the Levenberg-

Marquardt methods (Levenberg 1944; Marquardt 1963), or direct search, being the Hooke and 

Jeeves (Hooke and Jeeves 1961) and the Nelder and Mead (Nelder and Mead 1965) algorithms 

the most popular. The convergence of these methods is faster when aiming at local minima of 

the objective function but if one is interested in a global minimum, with objective functions 

that are likely to have several local minima, stochastic optimization methods can be suitable 

alternatives and have proven to yield the most computationally interesting results – strategies 

making use of genetic algorithms or evolutionary programming have been quite common for 

parameter optimization in ODE-based models of biochemical networks ((Kikuchi and others 

2003; Mendes and Kell 1998; Moles and others 2003). As an example of the difficulties 

encountered, the algorithm proposed by (Kikuchi and others 2003), efficiently estimates the 

parameters of an S-System with five variables but despite the small system size and the noise-

free data, each loop of the algorithm took around 10 hours on a cluster of 1040 Pentium III 

processors (933 MHz). 

Hence, gathering a priori knowledge on the system’s topology or building educated 

guesses for some of the model parameters (or imposing significant restricted ranges) is one of 

the best ways to improve the quality of the estimation task by reducing the high 

dimensionality of the parameter space typical of S-Systems and GMA models. It must be noted 

that preprocessing of the data is per se an intricate step, due to noisy time series datasets that 

must be dealt with frequently. 

 

1.4. Scope of the report 

The aim of the report herein presented is to give a state of the art on the available 

methodologies to deal with the parameter estimation/optimization process in S-System and 

GMA based models. It will focus primarily in recent efforts that have in some way contributed 

to improve the currently available methodologies, some of them only tested against artificial 

data but with very promising results. First a brief description of the power-law based 

frameworks is made. Subsequently, the methods review starts with decoupling approaches 

that were proposed to increase computation speed of the optimization routines and which are 

now used in most of the methods that will follow. Focus then shifts to methods that are 

deterministic in nature such as alternating regression, eigenvector optimization, global 

optimization with branch-and-reduce and the interval analysis based methods. Methods based 

on evolutionary programming and simulated annealing follow afterwards. 

 



9 

2. RECENT DEVELOPMENTS IN PARAMETER ESTIMATION OF POWER-

LAW BASED MODELS 

 

2.1. Decoupling Methods 

 Two of the leading challenges in the parameter estimation process are the 

development of efficient optimization methods but also of powerful numerical integration 

tools to solve differential equations. Failure in numerical integration is a major concern when 

performing optimization tasks besides the fact that it is time consuming, requiring in excess of 

95% of the total search time and this percentage may even approach 100% if the differential 

equations are stiff (Voit and Almeida 2004). 

 Different groups have made important contributions, developing new methods to 

reduce this computational burden. (Kimura and others 2005) present a decomposition strategy 

to divide the inference problem into several subproblems; (Voit and Almeida 2004) propose a 

derivative method, based in slope approximations to be used as measured data, splitting the 

differential equations into sets of algebraic relations; (Tsai and Wang 2005) also present a way 

of decoupling the system into algebraic equations through a modified collocation method. 

a) Decomposition Method 

 (Kimura and others 2005) present a way to reduce the high-dimensionality of the 

inference problem in S-System models by decomposing it into a set of smaller subproblems. 

They define the canonical problem as an optimization aiming at the minimization of an 

objective function based in the sum of the squared relative error and then divide it into several 

subproblems, each corresponding to a state variable. Thus for an S-System with n constituents, 

the objective function is as in Equation 5: 

fi =  ∑  !�"#$%!&,�"#$'(
!&,�)*+(,#
�   with i = 1,2,…,n; t = 1,2…,N [5] 

where �&,�"-$ is the experimentally observed concentration of species i, from the time-series 

data  and ��"-$ is the numerically determined concentration of species i, by solving the system  

defined in Equation 6: 

��� =  �� ∏ .�	
���
� − �� ∏ .��
���
�  with  � = 1,2, … , �      [6] 

 such that .� = /�� ,        �0 1 = ��2�, 3-ℎ567�85 9  
where �2� is an estimated concentration value obtained by direct estimation from the time-

series data (either by spline interpolation or local linear regression, depending on the absence 

or presence of noise in the dataset, respectively). 

 As previously noted, the optimization problem as defined in Equation 1, is 2n(n+1) 

dimensional. By applying this decomposition, we end up having n subproblems with dimension 

2(n+1) and the solutions of Equation 6 will be more proximate to the solutions from Equation 
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1 depending on the accuracy of the curves given as observed concentrations. The optimization 

formulated in this manner is amenable to parallel computation of the decoupled differential 

equations which can greatly reduce the computation time of the search algorithm. 

 

b) Derivative Method 

A new direction in approaching the parameter estimation task was recently introduced 

by (Voit and Almeida 2004) following ideas in (Voit and Savageau 1982), where the authors 

propose the decoupling of the system into a set of separate algebraic equations, by 

interpreting the time-derivatives at each time point as a slope measured from the data. This 

method does not require the integration of the set of differential equations and thus 

optimization algorithms can become much faster. As an example, if one has an S-System 

model with n components, with data measurements at N time points, the decomposition in 

Equation 7 can be made: 

 

:�"-;$ ≈  �� = ��	
��
�
� "-;$ − �� = ���
�"-;$�

�
�   
with  � = 1,2, … , � and k = 1,..,N         [7] 

where :� = Si(tk) is the estimated slope of metabolite Xi at time point -;. The optimization 

problem is thus reformulated from a set of n differential equations to n x N algebraic 

equations. This reformulation allows the independent analysis of each equation, which allied 

to the easiness of manipulating algebraic equations, greatly reduces the time requirements of 

parameter estimation. 

It is extremely important to have accurate calculations of the slopes for the method to 

be efficient because most of the time derivatives calculations amplifies the error present in 

noisy datasets. Thus, depending on the type of data, spline interpolation or smoothing 

algorithms can be used for this purpose, e.g. (Vilela and others 2007) propose a smoothing 

algorithm capable of dealing with different noise structures that has the advantage of 

providing a closed-form solution for computing the derivatives of the smoothed signal. 

 

c) Modified Collocation Method 

As an alternative way of decoupling the set of differential equations into an 

approximating set of algebraic equations, (Tsai and Wang 2005) suggest a modified collocation 

method.  Collocation methods are traditionally used for finding numerical solutions of ODEs. 

The underlying idea is to choose a finite-dimensional space of candidate solutions (usually in 

the form of polynomials), and a number of points in the domain, named collocation points, 

that satisfy the given system at the collocation points. Hence, the state variables Xi (as defined 

in Equation 1), are spanned by a set of shape functions >�"-$ as shown in Equation 8: 
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( ) ( ) ( )
1

N

i k j k

j

X t x t tφ
=

=∑     [8] 

where ?"1$ is an expansion coefficient of X(t) and >�  is a set of polynomial shape functions. 

 The authors illustrate their method by using the simplest shape function, the 

interpolation polynomial in the Lagrange form, expressed in Equation 9, and applied to N 

collocation points: 

?"1$ = ?"1 − 1$ + 0.5D�E0F?"1$, GH + 0F?"1 − 1$, GHI    [9] 

       = JF?"1$, ?"1 − 1$, GH   with j=1,2,…,N 

where x(j) is a vector of expansion coefficients at the j-th collocation point and is equal to the 

solution X(t) at time t = tj; f[x(j),p] is a vector function of expansion coefficients at the j-th 

collocation point, D� is the time interval between the j-th and the (j-1)-th collocation points. To 

increase the speed of the algorithm, the authors further approximate the system by 

substituting the measured data (eventually smoothed) at each collocation point in the right-

hand side of Equation 9, such that (see Equation 10):  

K��"-�$⋮��"-�$M ≅ K�&,�"-�%�$⋮�&,�"-�%�$M + 0.5D� OK0�"�& -�', G$⋮0�"�& -�', G$M + K0�"�& -�%�', G$⋮0�"�& -�%�', G$MP    [10] 

with j=1,2,…,N 

By doing this, the reverse problem is reformulated into a system of n x N decoupled 

algebraic equations, saving a lot of computational time because no numerical integration of 

differential equations is needed. 

A known problem of all these decoupling strategies is that care must be taken with the 

mass conservation relations between differential equations. Since most of the times different 

rate-laws are shared among several ODEs, constraints must be imposed to account for these 

effects before running the optimization algorithm, or these relations will be lost when 

decoupling the system. 

 

2.2. Alternating Regression 

Alternating regression has been proposed by (Chou and others 2006) as a fast new 

strategy to parameter estimation and structure identification within the S-System framework. 

Its key feature is that it dissects the nonlinear inverse problem of parameter estimation into 

iterative steps of linear regression. After decoupling the system in the sense proposed by (Voit 

and Almeida 2004), the algorithm alternates between estimating the parameters of the 

production term and the degradation term of a single S-System equation at a time. Guesses 

from one phase are used to improve the estimates of the other phase iteratively until a 

solution is found or the algorithm is stopped under certain criteria. The method is also suited 
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for structure identification when no parameters in the S-System are a priori set to zero. The 

algorithmic details for estimating the parameters of the i
th

 differential equation are as follows: 

[Alternating Regression] 

1. Create the (n+1) x N matrices LP and LD containing the regressors of the production and 

degradation terms, respectively, of Xi. Only those Xi that directly affect the production 

term (those with non-zero kinetic order) are included in LP. LD is defined analogously but 

with Xi affecting the degradation term.  

Q� =  
RS
SS
ST1 U3V "��"-�$$ …1 U3V "��"-W$$ …⋮1⋮1

⋮U3V "��"-;$$⋮U3V "��"-,$$
…
…

    
U3V "��"-�$$U3V "��"-W$$⋮U3V "��"-;$$⋮U3V "��"-,$$

    
……
…
…

    
U3V "��"-�$$U3V "��"-W$$⋮U3V "��"-;$$⋮U3V "��"-,$$XY

YY
YZ
 

2. Compute the matrices CP and CD, invariant throughout the iterative process [� = "Q�\ Q�$%�Q�\   , [] = "Q]\ Q]$%�Q]\  

3. Select initial values for βi and hij, making use of available information for constraining 

some or all hij 

4. FOR all tk, k = 1,2,…, N compute �� ∏ ���
�"-;$��
�  using values Xj(tk) from the observed or 

smoothed time series data 

5. Compute the N-dimensional vector, yD:  ^] = U3V ":�"-;$ + �� ∏ ���
�"-;$��
� $ , k =1,2,..,N 

6. Estimate the parameters of the production term by determining vector bP: _� = `�a�, Va�� , 1 = 1,2, … , �b\ = [�^] 

7. Perform the analogous regression for the degradation term using the parameter 

estimations used in the previous step: 

^] = U3V "�� = ��	
�"-;$ −  :�"-;$�
�
� $ 

_] = `�c�, ℎ2��, 1 = 1,2, … , �b\ = []^� 

The components of bD will be used as estimations for the parameters of the degradation 

term in the next iteration. 

8. Calculate the logarithm of the sum of squared-errors (SSE): 

U3V"::d$ = U3V ef ^]"g$ − Q�_�"g$'W,
;
� + f ^�"g$ − Q]_]"g$'W,

;
� h 

 

9. ITERATE UNTIL the termination criteria are satisfied (for example log(SSE) is smaller than a 

specified value or the maximum number of iterations is reached) 

The algorithm was successfully demonstrated with artificial data generated for a 

didactic biochemical network with 4 dependent variables and 17 parameters. The authors 

claim that the strongest point of alternating regression is its use of iterative linear regressions 

that renders the algorithm extremely fast and, in combination with decoupling methods, 

makes it many times faster than an algorithm that directly estimates systems of nonlinear 
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differential equations simultaneously. Nevertheless issues on patterns of convergence and 

convergence speed are not well understood yet, and no necessary and sufficient criteria for 

convergence are known. Issues on the suitability of alternating regression for noisy datasets 

were recently addressed (Beyer 2008) and despite of still being relatively fast, some difficulties 

have arisen, with the algorithm not being able to recover the parameter values of the tested 

models used. Even though the curve fits were reasonable, predictions for untested conditions 

were unsuccessful. 

 

2.3. Eigenvector Optimization 

 

Recently (Vilela and others 2008; Vilela and others 2009) proposed a new method 

motivated by Alternating Regression for the problem of model identification when no 

information on the system’s topology exists. The method decouples the system into sets of 

algebraic equations and uses multiple linear regression coupled to a sequential quadratic 

programming optimization routine. Unlike Alternating Regression, which iteratively computes 

the parameters from both terms of the S-System to improve the estimates successively, this 

new approach first focuses only on one of the terms, estimating both its rate constant (α or β) 

and kinetic order (g or h) accurately before the other term is estimated through linear 

regression. The estimation of the first term’s parameters relies on the following notion – as in 

Alternation Regression, the decoupled S-System format can be rewritten such that: 

                         Q�_� = ^�          [11] 

where LP, bP and yP are as defined in points 1, 5 and 6, respectively, of Alternating 

Regression. It is clear that, if matrix LP is invertible, than the parameter vector bP can be 

computed through _� = "Q�\ Q�$%�Q�\ ^� . Combined with Equation 11, this means that: 

"Q�\ Q�$%�Q�\ ^� = ^� ⟺ [�^� = ^�     [12] 

Where CP is the same matrix as in point 2 of Alternating Regression. Equation 12 

implies that the vector yP must be an eigenvector of matrix CP, with associated eigenvalue 1. 

The proposed method thus relies in optimizing a cost function based in the logarithm of the 

squared residuals between the left and right sides of Equation 12. This is, find the optimal 

eigenvector â� = [�^� such that the evaluation function F in Equation 13, is minimized. The 

authors suggest a Sequential Quadratic Programming routine to perform this constrained 

minimization step. 

                        J = log ""^� − â�$\"^� − â�$$        [13] 

The algorithmic details go as follows. 

[Eigenvector Optimization] 

1. Create the (n+1) x N matrices LP and LD containing the regressors of the production and 

degradation terms, as in the Alternating Regression algorithm. 
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2. Compute the matrices CP and CD, invariant throughout the iterative process [� = "Q�\ Q�$%�Q�\   , [] = "Q]\ Q]$%�Q]\  

3. Select initial values for βi and hij. The authors suggest the computation of hij given an 

initial estimate of βi using a linear regression under logarithmic space on the expression �� ∏  ��
� ��            �
� = m − :�%, where Si
- 

represents negative slope values computed from the 

time-series. If the slope vector does not contain negative values, than m should be 

discarded. 

4. Run the Sequential Quadratic Programming routine on function F on Equation 13, using 

the form of the gradients of F (see (Vilela and others 2008) Methods section). 

5. Calculate the other term parameters using multiple linear regression and using the 

optimized parameters computed from the eigenvector optimization. 

 

This new method is not free from the convergence problems already found on 

Alternating Regression, especially when ill-posed problems are at stake (when collinearity 

exists between columns of the regression matrix LP). However, the method was tested against 

several systems with different sizes (2, 4 and 5-state variable sizes), and apart from the ill-

posed cases, it showed the same convergence pattern. This result is clear from the 

convergence tests performed by the authors and thus it appears to be a computationally 

efficient alternative to other methods herein discussed, allowing a quick exploration of the 

parameter space (on the order of minutes). 

 

2.4. Global Optimization with Branch-and-Reduce 

(Polisetty and others 2006) present a way of using deterministic optimization to find 

global solutions for the parameter estimation task in GMA-based models. Consider a given 

nonconvex nonlinear optimization problem as set in Equation 14 with n dependent variables: 

n��o,� pqpr  [14] 

such that ��� = ℎ�"�"-$, �, 0$ −  5�"-$ with  � = 1,2, … , �;   6 > 0;   - = 1,2, … , u  

where r is the r-norm considered for minimization, P is the number of data points sampled at 

time t, hi are the GMA rate functions that define the production or consumption rates for 

species i, given the parameters γ and f; and ei(t) are the errors associated with each constraint 

equation for species i at time t. Note that the objective function is linear, but the nonconvexity 

results from the equality constraints, which are non-linear. 

 To solve the problem formulated above, a branch-and-bound variant method is 

suggested coupled with convexification strategies. Before submitting the model to the global 

optimization a process of converting the GMA format to a set of linear systems with 

logarithmic constraints occurs. Since in Cartesian space the equations consist in sums of 

power-law terms and each power-law term also becomes linear in a multivariate logarithmic 

space, the strategy makes use of this dual linearity features, reducing the remaining linearities 
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to simple logarithmic constraints. Despite still being nonconvex, these constraints can be 

underestimated by simple functions, converting the task into a linear problem. This 

reformulation is presented in the set of Equations 15. 

n�� ∑ 5�"-;$∀�,;     [15] 

 

such that  ���"-$ − ∑ ±w�;"-$; ≤  5�"-$   [15a]  

  −���"-$ + ∑ ±w�;"-$; ≤  5�"-$   [15b] 

  7�;"-$ = U3V "w�;"-$$   [15c] 

  7�;"-$ = y�; + ∑ 0��;U3V "��"-$$�z{�
�  [15d] 

where the two inequalities in Equation 15a and 15b arise because when minimizing the 

absolute value of some function, constraints of the form |f(x)|= e can be rewritten as two 

inequality constraints f(x) ≤ 5 and -f(x) ≤ 5. w�;"-$ = ��; ∏ "��"-$$�
�|�z{�
�  are new variables 

defined to the convexification purpose. The values of ���"-$ and ��"-$ are assumed to be 

known from the observed data, for example from smoothing methods. If we further apply 

logarithms to each definition of the variables z, it will result in the variables w defined in 

Equations 15c and 15d, where y�;  is the logarithm of the rate constant. Notice that y�;, fijk and 

ei(t) only appear in linear constraints whereas w and z are related through a simple non-linear 

expression. 

After this initial step, a branch-and-reduce method is applied. This method generates 

upper and lower bounds for the objective function, at the global solution. It is a variant of the 

traditional branch-and-bound algorithm with bound tightening techniques for accelerating the 

convergence of the algorithm – unfeasible or suboptimal parts of the feasible region are 

eliminated by using range reduction techniques such as optimality-based and feasibility-based 

range reduction tests or interval analysis techniques. 

[Branch-and-Reduce] 

1. Generate the boundaries: the lower bound is created by solving the convex relaxation 

of the original nonlinear problem. Any local minimizer for the original non-linear 

problem may serve as an initial upper bound for the objective function value. If the 

lower bound is sufficiently close to the upper bound, within a pre-specified ε 

tolerance, the algorithm terminates.  

2. If not, introduce partitions in the feasible region generating new lower bounds for the 

new partitions. Use a fathoming criteria to verify if a given partition needs further 

processing or if it can be removed from consideration: 

a. If the relaxed problem associated with the partition is infeasible, adding additional 

constraints will not make it feasible; the partition itself is infeasible and hence can 

be removed from further consideration; 
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b. If the objective function value of the relaxed problem associated with the current 

partition is greater or equal to the best solution found so far, then the partition can 

be removed from further consideration. 

3. Any feasible solution to the original problem may serve as an upper bound for the 

global solution. The algorithm terminates when the lower bounds for all partitions 

either exceed or are sufficiently close to the best upper bound. At this point, a global 

optimum has been determined within the originally preset bounds on the parameter 

search space. This global optimum is the best value of the objective function (but it is 

noteworthy that multiple points in the parameter space may lead to equivalent values 

of the objective function) 

The algorithm was tested in two artificial networks: a didactic example (3 dependent 

variables, 1 independent variable and 14 parameters) and in a more complex model of the 

anaerobic fermentation pathway of Saccharomyces cerevisiae (5 dependent variables, 9 

independent variables and 19 parameters). For the systems chosen the branch-and-reduce 

algorithm is fast and reliable and the authors claim this to be advantageous when compared 

with local solvers, such as non-linear regression algorithms, which may not be able to converge 

to the global solution when the parameter search space is large, or the error surface is ragged. 

A slightly altered methodology (using a Mixed Integer NonLinear Programming Algorithm) was 

demonstrated to be feasible in (Polisetty and others 2008), to optimize the yield in two 

different regulated metabolic networks.  

 

 

 

2.5. Deterministic Approaches with Interval Analysis and Newton-Flow Analysis 

In (Tucker and Moulton 2006) the authors present a deterministic approach to 

parameter estimation based on interval analysis which allows the analysis of entire sets of 

parameters, exhausting the global search within a finite number of steps, and overcoming the 

known drawbacks when approaching this issue as a global minimization problem.  The 

methodology makes use of the decoupling strategy proposed by (Voit and Almeida 2004) but 

extends it by adopting the computation of ranges of slopes for entire domains of parameters. 

If [pi] denotes a hypercube in the parameter space ℙ~ (each component of [pi] is an interval), 

then for any point pi ∈ [pi] we have a vector field f such that: 

0�"�"-;$; G�$ ∈ J�"�"-;$; FG�H$ 

where Fi is a set-valued function that contains all possible slopes corresponding to parameters 

taken from [pi]. Thus if a given sample point X(tk) produces a range of slopes Si such that :� ∉ J�"�"-;$; FG�H$, then no parameter in [pi] can have generated the sample data; it is then 

said that the parameter hypercube [pi] violates the cone condition, and this is a simple criterion 

to reject regions of the parameter search space ℙ~. The proposed algorithm can be generally 

described as follows: 

 



17 

[Interval Analysis for S-System Parameter Estimation] 

1. For a collection of sample data {Xij;Si}i,j, generated from an S-System with parameter p* = 

(p1*,…,pd*), the search is divided into d independent component-wise searches for 

p1*,…,pd*. The searches can be performed in parallel because they are completely 

independent. 

2. Initialize each global parameter region for the search as ℙ = ([p1],…,[p2(d+1)]), where the 

bounds can be set based in a priori biochemical knowledge. 

3. The idea is to adaptively partition each space ℙ~ into successively smaller hypercubes, 

retaining the ones satisfying the cone condition. If this occurs either the parameter box 

diameter is smaller than a predefined tolerance value, in which case the result is stored, 

or the hypercube is bisected along its widest component, and the two resulting 

hypercubes are fed to the algorithm again. For a given level of resolution, the process is 

terminated and the result is a collection of hypercubes [pi
(1)

],…,[pi
(n)

] each of which 

satisfies �([pi
(j)

]) = 1 where 

 �([pi
(j)

]) ≝ �  :� ∈ J�"�"-;$; FG�H$',�
�  

 

is a Boolean function that returns 1 if [pi] ∈ ℙ~ satisfies the cone condition at all sample 

times, and 0 otherwise. 

 The methodology was tested in several S-Systems in the task of reconstructing the 

model structure (this is, not knowing a priori the zero-valued parameters). The algorithm has a 

runtime of several hours for a system of 4 or 5 equations and gives accurate parameter 

estimations, but is not yet able to handle noisy time series data. The authors also envision that 

the method should be scalable to a larger class of problems, including GMA models. 

More recently, (Kutalik and others 2007) presented an interesting new approach that 

ameliorates the interval analysis algorithm in terms of computational performance and in 

handling noisy time series data. They show, for several S-System models, that there is a one-

dimensional attractor (containing the true parameter set) in the Newton-flow corresponding 

to the standard minimization problem in parameter estimation. Although the existence of this 

attractor is not mathematically proven, the authors propose the form shown in Equation 16. 

��"7$ =  
���
�
���

 7, j=1 
  ��������z� , j=2,…,n+1

 7 + ��, j=n+2
 �����(�����(z� , j=n+3,…,2n+2

9   [16] 

where aj, bj, cj and dj are real constants and variable j loops through the parameter indices, this 

is, j = 1 corresponds to αi, j = 2 to gi1, j = 3 to gi2,…, j = n+1 to gin, j = n+2 corresponds to βi, j = 

n+3 to hi1, until j = 2n+2 that corresponds to hin. 

Thus it suffices to determine this attractor, instead of searching the complete 

parameter space, to find a global optimal parameter set. The authors also propose a variant of 
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this method to extend it to the task of identifying network topologies. The algorithmic details 

are described below. 

[Searching the Attractor in Newton-flow for S-System Parameter Estimation] 

1. Start by decoupling the differential system in the sense proposed by (Voit and Almeida 

2004), into n x N algebraic inequalities, using the slopes Si  

2. FOR the i
th

 set of N equations for the n available time points, define the optimization 

problem as a least-squared minimization problem: 

0"G�$ =  f e:�"-�$ − �� = �;�	
|�
;
� − �� = �;��
|�

;
� hW,
�
�  

where pi = (αi,gi,1,…,gi,n,…,βi,hi,1,…,hi,n) and the aim is to find a set pi that minimizes f(pi) 

subject to upper and lower bounds set by a priori biochemical knowledge. 

3. Generate 40 uniformly distributed initial random guesses within the constrained 

parameter boxes, which will be used to feed the interior-reflective Newton 

minimization algorithm – the resulting optimized parameters are assumed to lie in the 

neighborhood of the hypothesized attractor. 

4. With a 2-dimensional regression, use the previous estimations to determine the 

parameters aj, bj, cj and dj from Equation 16. If a goodness of fit R
2
 greater than 0.9 is 

achieved proceed to step 5. 

5. Once the attractor equations are estimated, use these to perform again the Newton 

minimization algorithm. Start by dissecting the bounding interval for α, [li, ui] into M 

equal parts, this is, FU� = 7� ≤  7�  ≤ ⋯  ≤  7� = ��H and performing the 

optimization with initial guesses �"7�$, … , �"7�$ - this will yield new estimates for 

the S-System parameters 

6. The global optimum will be chosen amongst the results of step 5, corresponding to the 

parameter set whose cost function evaluation is minimal. 

The methodology was tested with 4-variables and 30-variables artificial networks and 

was shown to be efficient even for noisy datasets because the attractor in the Newton flow 

appears to be relatively insensitive to noise. If this conjectured attractor is true (even if the 

authors do not mathematically prove its existence) it would guarantee that the methodology 

always results in a global optimum for the parameter space. 

 

2.6. Evolutionary Multi-Objective Optimization 

(Liu and Wang 2008), suggest a multi-objective optimization based in an evolutionary 

algorithm in order to infer realizable S-System structures. As suggested elsewhere (Kikuchi and 

others 2003; Kimura and others 2005), this task benefits from the assignment of a penalty 

factor to the cost function based on the sums of the magnitudes of kinetic orders. However 

there is no obvious way of choosing an admissible penalty weight for this purpose and so, the 

authors circumvent this need by posing the inference problem as a simultaneous minimization 

to find the parameter set p in the feasible region Ω, (see Equation 17): 
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n�� �∈�E��, �W, ��I    [17] 

 where  �� =  ��,� ∑ ∑  !&,� #�'%!�"#�$'(
!&,�)*+(,��
���
�  

   �W =  ��,� ∑ ∑  !� &,� #�'%!� �"#�$'(
!� &,�)*+(,��
���
�  

   �� =  ∑ ∑  �V��� + �ℎ���'��
���
�  

 The three functions J1, J2 and J3 are, respectively, the concentration error (in the least-

squared sense), the slope error (in the least squared sense) and the interaction measure. The 

concentration error is employed to measure the goodness-of-fit of the model, Xi(t), to 

experimental time-series data, Xe,i(t); the slope error is used to judge the accuracy of the net 

rates (���"-$) whereas the interaction measure sums up magnitudes of the kinetic orders, in 

order to have a measure to prune the structure of the S-System. 

They use Pareto optimality and the ε-constraint method (Sakawa 1993) to convert the 

multi-objective optimization into a single-optimization problem (taking one criterion as the 

objective function and letting the rest be inequality constraints), as reformulated in Equation 

18. 

n�� �∈� � = ��"G$/��� +   ¡n�?E[�"G$, [W"G$I¢zW   [18] 

such that [�"G$ = ��"G$/���  − 1 ≤  0 

  [W"G$ = �W"G$/�W�  − 1 ≤  0 

 The values Ji
E
 (i = 1,2,3) in Equation 18 refer to the expected values for the 

concentration error, the slope error and the interaction measure, respectively. The bracket 

operation is defined as ¡["G$¢z = n�? E["G$, 0I; the second term uses a weighted penalty 

when the parameter set p is not feasible; if any or both C1 and C2 are positive, the worst value 

is used; if both inequality constraints are feasible (max {C1,C2} ≤ 0) the penalty is null 

(¡["G$¢z = 0). To improve the search for feasible parameters, the penalty parameter, ω,  can 

be set to be greater than 1/max{J1
E
,J2

E
}. 

 The authors use a Hybrid Differential Evolution (HDE) algorithm (refer to (Tsai and 

Wang 2005; Wang and Sheu 2000) to minimize each objective function towards finding the 

global solution. The algorithmic details follow. 

[Multi-Objective Optimization] 

1. Calculate the expected values, J1
E
 and J2

E
, for the concentration error and slope error 

using HDE to minimize its single-objective parameter estimation problem (in Equation 

17); let each expected value be its corresponding minimum error criterion 

2. Compute the sum of the magnitude of kinetic orders for each single-objective 

parameter estimation problem. Let each expected value of the interaction measure for 

each single-objective problem be J
E

31 and J
E

32, and J3
E
 set as the maximum of these 

values 
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3. Set the parameter ω, such that ω > 1/max{J1
E
,J2

E
},  and solve the inference problem in 

Equation 18 using HDE. Let the minimum solution be p*. 

4. If ¡["G∗$¢z is smaller than a pre-defined tolerance value, go to step 5; otherwise stop 

the algorithm 

5. Sort the kinetic orders, gij and hij, using the score |gij|/max{|gij|,|hij|} and 

|hij|/max{|gij|,|hij|}, respectively 

6. Delete the smaller kinetic orders with scores less than the assigned value and repeat 

step 1-4 to infer the pruned model. 

 

The authors demonstrate the efficiency of this iterative algorithm with two case-

studies: inferring an artificial network with 5 dependent variables, 3 independent variables and 

28 parameters both with noise-free and noisy datasets, and a 4-variable model of a batch 

fermentation process with Saccharomyces diastaticus. Despite of the relatively successful 

results the authors acknowledge that the pruning strategy may not be adequate for inferring 

whether genetic interactions are fragile or robust, because the interaction measure may not 

be suitable for such high sensitive systems. They suggest instead the use of dynamic 

sensitivities of state variables with respect to the parameters gij and hij in the multi-objective 

minimization problem. 

 

 

2.7. Simulated Annealing 

 

The heuristic optimization method commonly known as Simulated Annealing 

(Kirkpatrick and others 1983) has particular features that render it interesting for the 

parameter estimation task in S-Systems. Depending on the ‘temperature program’ used, the 

method can behave as a global or a local optimization approach, switching to the latter as the 

pseudo-temperature goes down. Different candidate solutions (of quality different from the 

current solution) can be accepted during the algorithm iterations, thus allowing transitions out 

of the local optima typical of the parameter search space. (Gonzalez and others 2007) explore 

these features by coupling the SA algorithm with an appropriately constructed perturbation 

function for the parameter search. For example, Equation 19 describes how the candidate 

solutions for the kinetic orders are randomly perturbed in the course of the optimization 

process: 

  G"�$ = G"�%�$ + U × log √5 + 1' × ¦"?§, ¨$  [19] 

where p is the kinetic order (gij or hij), e is the current residual error, and l is an externally 

optimized constant. ¦"?§, ¨$ is a function that returns a random number from a Gaussian 

distribution with mean ?§ and standard deviation σ, here set to 0 and 1, respectively. The term U × U3V √5 + 1' is suggested by the authors because there exists a quasi-linear relationship 

between a perturbation in a given parameter and the current total error of the optimization 

which is captured by this factor (c.f. (Gonzalez and others 2007)). 
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A general description of the SA implementation proposed by the authors goes as 

follows: 

 

[Simulated Annealing] 

1. Generate an initial estimate, p
(0)

, assigning random values to each parameter (within 

the constraining boundaries) 

2. Initialize the pseudo-temperature T (should be enough to completely ‘melt’ the initial 

parameter estimates). Authors suggest a value of 1000 as initial value. 

3. WHILE T > Tmin (Tmin = 10
-5

) 

a. Generate a candidate solution p’ by applying the perturbation function 

(Equation 19) for each of the kinetic parameters, initialized in p 

b. Compute the residual errors as 5 =  ��, ∑  �2�"-$ − ��"-$'W��
�  with i = 1,2,…,n and t = 1,2,..,N  

where ��"-$ is the concentration of species i, at timepoint t, from the time 

series data and �2�"-$ is the estimation of that concentration obtained by 

numerical integration of the system with the particular candidate h’.  

Set ∆e to e(p’)-e(p) 

c. IF ∆e ≤ 0, accept the candidate solution p’, OTHERWISE accept the candidate 

solution based in the probability P = exp{-∆e/T} (notice that higher 

temperatures and lower changes in the error lead to higher probabilities for 

the acceptance of p’) 

d. Lower the variable T (the authors used a pseudo-temperature regime of 

gradually decrementing T by 96% of the current value) 

4. END WHILE 

The authors demonstrate the efficiency of the algorithm in three artificial networks 

designed to simulate different topologies and behaviors and also in the cadBA system of 

Escherichia coli against experimental data. They also propose a way of adapting the method 

for the purpose of structure identification by running an initial estimate of all the model 

parameters, using a pruning rule to set the zero-valued ones and then performing the 

algorithm to re-estimate them. 
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3. CONCLUSION 

 

Multilevel biological data for different cellular systems are accumulating at a day basis 

speed. High-quality time series of gene expression, metabolite concentrations or enzyme 

activities now add to the steady-state data gathered in the last decades of molecular biology. 

Systems biology task now is to make sense of all this knowledge to help understand the rules 

that govern cellular behaviors in an integrated fashion. 

Biochemical Systems Theory has been around for 30 years and has proven to be a 

successful mathematical framework for modeling biological systems. Much has been discussed 

both on its S-System variant and on the Generalized Mass Action form, their advantages as 

well as their shortcomings are acknowledged by the modeling community. Nevertheless the 

task of building the model is still frequently hindered when estimating its parameters, and as 

the networks under study grow in size, the associated combinatorial explosion in the 

parameter search space is unavoidable. Hence, the computational power has become a 

limiting step for modelers. More efficient and easy to automate methodologies are required to 

overcome this. 

Decoupling methods have been suggested by different researchers in order to relieve 

the computational costs associated with having to numerically integrate large systems of 

differential equations. These techniques decompose the optimization problem into smaller 

subproblems that can be dealt either through parallel computation of the separate solutions 

or by transforming the system of differential equations into a larger set of algebraic equations 

which represent a minor burden in computation time. The equations can then be solved 

independently yielding ‘local’ estimates for the parameters of each equation. Nevertheless it is 

recurrent that the collection of the resulting ‘local’ estimates not always leads to a satisfactory 

fit of the complete, integrated set of differential equations. And even when this is the case, 

seldom is the model able to predict system’s responses under untested conditions, severely 

compromising its generalization properties and thus its overall usability. Notwithstanding this 

appears to be an unavoidable drawback that renders the optimization process feasible for 

realistic biological systems sizes. The major improvements in computation speed brought by 

decoupling strategies have been used in most of the latest algorithms as shown in this report. 

Even if the parameter solutions are very sensitive to the noise structure in the data, they can 

provide rough guesses to feed anew to other optimization routines. For example (Gennemark 

and Wedelin 2007) proposed a heuristic search algorithm to identify model structure and 

estimate its parameters which makes use of the decoupled system to prune the model space 

by evaluating local structures. For the estimation process a standard nonlinear least squares 

method is fed with parameter guesses computed through the derivative method. 

The recent methodologies highlighted in this review present promising results in 

circumventing the high-dimensionality of parameter space and are thus interesting approaches 

for both structure inference and parameter estimation in S-System and GMA models, even if 

some of them have so far been solely applied to artificial data. Despite of its attractiveness, a 

direct and efficient methodology has not been found yet. Even if out of the scope of this 

report, it would be interesting to test how these methods perform in the model identification 
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task, because up to now, there is no systematic comparison of their performance. Since there 

are now available some benchmarks for testing model identification from time-series data 

(Gennemark and Wedelin 2009) this is work worth exploring in the future. Nevertheless, given 

the huge variety of problem domains and the intricacy of biological systems, the holy grail of 

optimization methods, if it exists, is still far from sight – and the role of the modeler is still one 

of choosing the best methodology, given the available knowledge on the particular system 

under study. 
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